Metamath Proof Explorer


Theorem lduallvec

Description: The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr ; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses lduallvec.d D=LDualW
lduallvec.w φWLVec
Assertion lduallvec φDLVec

Proof

Step Hyp Ref Expression
1 lduallvec.d D=LDualW
2 lduallvec.w φWLVec
3 lveclmod WLVecWLMod
4 2 3 syl φWLMod
5 1 4 lduallmod φDLMod
6 eqid ScalarW=ScalarW
7 eqid opprScalarW=opprScalarW
8 eqid ScalarD=ScalarD
9 6 7 1 8 2 ldualsca φScalarD=opprScalarW
10 6 lvecdrng WLVecScalarWDivRing
11 2 10 syl φScalarWDivRing
12 7 opprdrng ScalarWDivRingopprScalarWDivRing
13 11 12 sylib φopprScalarWDivRing
14 9 13 eqeltrd φScalarDDivRing
15 8 islvec DLVecDLModScalarDDivRing
16 5 14 15 sylanbrc φDLVec