Metamath Proof Explorer


Theorem ldualvsdi2

Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses ldualvsdi2.f F=LFnlW
ldualvsdi2.r R=ScalarW
ldualvsdi2.a +˙=+R
ldualvsdi2.k K=BaseR
ldualvsdi2.d D=LDualW
ldualvsdi2.p ˙=+D
ldualvsdi2.s ·˙=D
ldualvsdi2.w φWLMod
ldualvsdi2.x φXK
ldualvsdi2.y φYK
ldualvsdi2.g φGF
Assertion ldualvsdi2 φX+˙Y·˙G=X·˙G˙Y·˙G

Proof

Step Hyp Ref Expression
1 ldualvsdi2.f F=LFnlW
2 ldualvsdi2.r R=ScalarW
3 ldualvsdi2.a +˙=+R
4 ldualvsdi2.k K=BaseR
5 ldualvsdi2.d D=LDualW
6 ldualvsdi2.p ˙=+D
7 ldualvsdi2.s ·˙=D
8 ldualvsdi2.w φWLMod
9 ldualvsdi2.x φXK
10 ldualvsdi2.y φYK
11 ldualvsdi2.g φGF
12 eqid BaseW=BaseW
13 eqid R=R
14 2 4 3 lmodacl WLModXKYKX+˙YK
15 8 9 10 14 syl3anc φX+˙YK
16 1 12 2 4 13 5 7 8 15 11 ldualvs φX+˙Y·˙G=GRfBaseW×X+˙Y
17 12 2 4 3 13 1 8 9 10 11 lflvsdi2a φGRfBaseW×X+˙Y=GRfBaseW×X+˙fGRfBaseW×Y
18 1 2 4 5 7 8 9 11 ldualvscl φX·˙GF
19 1 2 4 5 7 8 10 11 ldualvscl φY·˙GF
20 1 2 3 5 6 8 18 19 ldualvadd φX·˙G˙Y·˙G=X·˙G+˙fY·˙G
21 1 12 2 4 13 5 7 8 9 11 ldualvs φX·˙G=GRfBaseW×X
22 1 12 2 4 13 5 7 8 10 11 ldualvs φY·˙G=GRfBaseW×Y
23 21 22 oveq12d φX·˙G+˙fY·˙G=GRfBaseW×X+˙fGRfBaseW×Y
24 20 23 eqtr2d φGRfBaseW×X+˙fGRfBaseW×Y=X·˙G˙Y·˙G
25 16 17 24 3eqtrd φX+˙Y·˙G=X·˙G˙Y·˙G