Description: Reverse distributive law for scalar product operation, using operations from the dual space. (Contributed by NM, 21-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldualvsdi2.f | |
|
ldualvsdi2.r | |
||
ldualvsdi2.a | |
||
ldualvsdi2.k | |
||
ldualvsdi2.d | |
||
ldualvsdi2.p | |
||
ldualvsdi2.s | |
||
ldualvsdi2.w | |
||
ldualvsdi2.x | |
||
ldualvsdi2.y | |
||
ldualvsdi2.g | |
||
Assertion | ldualvsdi2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldualvsdi2.f | |
|
2 | ldualvsdi2.r | |
|
3 | ldualvsdi2.a | |
|
4 | ldualvsdi2.k | |
|
5 | ldualvsdi2.d | |
|
6 | ldualvsdi2.p | |
|
7 | ldualvsdi2.s | |
|
8 | ldualvsdi2.w | |
|
9 | ldualvsdi2.x | |
|
10 | ldualvsdi2.y | |
|
11 | ldualvsdi2.g | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 2 4 3 | lmodacl | |
15 | 8 9 10 14 | syl3anc | |
16 | 1 12 2 4 13 5 7 8 15 11 | ldualvs | |
17 | 12 2 4 3 13 1 8 9 10 11 | lflvsdi2a | |
18 | 1 2 4 5 7 8 9 11 | ldualvscl | |
19 | 1 2 4 5 7 8 10 11 | ldualvscl | |
20 | 1 2 3 5 6 8 18 19 | ldualvadd | |
21 | 1 12 2 4 13 5 7 8 9 11 | ldualvs | |
22 | 1 12 2 4 13 5 7 8 10 11 | ldualvs | |
23 | 21 22 | oveq12d | |
24 | 20 23 | eqtr2d | |
25 | 16 17 24 | 3eqtrd | |