| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lefldiveq.a |  | 
						
							| 2 |  | lefldiveq.b |  | 
						
							| 3 |  | lefldiveq.c |  | 
						
							| 4 |  | moddiffl |  | 
						
							| 5 | 1 2 4 | syl2anc |  | 
						
							| 6 | 1 2 | rerpdivcld |  | 
						
							| 7 | 6 | flcld |  | 
						
							| 8 | 5 7 | eqeltrd |  | 
						
							| 9 |  | flid |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 10 5 | eqtr2d |  | 
						
							| 12 | 1 2 | modcld |  | 
						
							| 13 | 1 12 | resubcld |  | 
						
							| 14 | 13 2 | rerpdivcld |  | 
						
							| 15 |  | iccssre |  | 
						
							| 16 | 13 1 15 | syl2anc |  | 
						
							| 17 | 16 3 | sseldd |  | 
						
							| 18 | 17 2 | rerpdivcld |  | 
						
							| 19 | 13 | rexrd |  | 
						
							| 20 | 1 | rexrd |  | 
						
							| 21 |  | iccgelb |  | 
						
							| 22 | 19 20 3 21 | syl3anc |  | 
						
							| 23 | 13 17 2 22 | lediv1dd |  | 
						
							| 24 |  | flwordi |  | 
						
							| 25 | 14 18 23 24 | syl3anc |  | 
						
							| 26 | 11 25 | eqbrtrd |  | 
						
							| 27 |  | iccleub |  | 
						
							| 28 | 19 20 3 27 | syl3anc |  | 
						
							| 29 | 17 1 2 28 | lediv1dd |  | 
						
							| 30 |  | flwordi |  | 
						
							| 31 | 18 6 29 30 | syl3anc |  | 
						
							| 32 |  | reflcl |  | 
						
							| 33 | 6 32 | syl |  | 
						
							| 34 |  | reflcl |  | 
						
							| 35 | 18 34 | syl |  | 
						
							| 36 | 33 35 | letri3d |  | 
						
							| 37 | 26 31 36 | mpbir2and |  |