Metamath Proof Explorer


Theorem lefldiveq

Description: A closed enough, smaller real C has the same floor of A when both are divided by B . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lefldiveq.a φ A
lefldiveq.b φ B +
lefldiveq.c φ C A A mod B A
Assertion lefldiveq φ A B = C B

Proof

Step Hyp Ref Expression
1 lefldiveq.a φ A
2 lefldiveq.b φ B +
3 lefldiveq.c φ C A A mod B A
4 moddiffl A B + A A mod B B = A B
5 1 2 4 syl2anc φ A A mod B B = A B
6 1 2 rerpdivcld φ A B
7 6 flcld φ A B
8 5 7 eqeltrd φ A A mod B B
9 flid A A mod B B A A mod B B = A A mod B B
10 8 9 syl φ A A mod B B = A A mod B B
11 10 5 eqtr2d φ A B = A A mod B B
12 1 2 modcld φ A mod B
13 1 12 resubcld φ A A mod B
14 13 2 rerpdivcld φ A A mod B B
15 iccssre A A mod B A A A mod B A
16 13 1 15 syl2anc φ A A mod B A
17 16 3 sseldd φ C
18 17 2 rerpdivcld φ C B
19 13 rexrd φ A A mod B *
20 1 rexrd φ A *
21 iccgelb A A mod B * A * C A A mod B A A A mod B C
22 19 20 3 21 syl3anc φ A A mod B C
23 13 17 2 22 lediv1dd φ A A mod B B C B
24 flwordi A A mod B B C B A A mod B B C B A A mod B B C B
25 14 18 23 24 syl3anc φ A A mod B B C B
26 11 25 eqbrtrd φ A B C B
27 iccleub A A mod B * A * C A A mod B A C A
28 19 20 3 27 syl3anc φ C A
29 17 1 2 28 lediv1dd φ C B A B
30 flwordi C B A B C B A B C B A B
31 18 6 29 30 syl3anc φ C B A B
32 reflcl A B A B
33 6 32 syl φ A B
34 reflcl C B C B
35 18 34 syl φ C B
36 33 35 letri3d φ A B = C B A B C B C B A B
37 26 31 36 mpbir2and φ A B = C B