| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lefldiveq.a |
|
| 2 |
|
lefldiveq.b |
|
| 3 |
|
lefldiveq.c |
|
| 4 |
|
moddiffl |
|
| 5 |
1 2 4
|
syl2anc |
|
| 6 |
1 2
|
rerpdivcld |
|
| 7 |
6
|
flcld |
|
| 8 |
5 7
|
eqeltrd |
|
| 9 |
|
flid |
|
| 10 |
8 9
|
syl |
|
| 11 |
10 5
|
eqtr2d |
|
| 12 |
1 2
|
modcld |
|
| 13 |
1 12
|
resubcld |
|
| 14 |
13 2
|
rerpdivcld |
|
| 15 |
|
iccssre |
|
| 16 |
13 1 15
|
syl2anc |
|
| 17 |
16 3
|
sseldd |
|
| 18 |
17 2
|
rerpdivcld |
|
| 19 |
13
|
rexrd |
|
| 20 |
1
|
rexrd |
|
| 21 |
|
iccgelb |
|
| 22 |
19 20 3 21
|
syl3anc |
|
| 23 |
13 17 2 22
|
lediv1dd |
|
| 24 |
|
flwordi |
|
| 25 |
14 18 23 24
|
syl3anc |
|
| 26 |
11 25
|
eqbrtrd |
|
| 27 |
|
iccleub |
|
| 28 |
19 20 3 27
|
syl3anc |
|
| 29 |
17 1 2 28
|
lediv1dd |
|
| 30 |
|
flwordi |
|
| 31 |
18 6 29 30
|
syl3anc |
|
| 32 |
|
reflcl |
|
| 33 |
6 32
|
syl |
|
| 34 |
|
reflcl |
|
| 35 |
18 34
|
syl |
|
| 36 |
33 35
|
letri3d |
|
| 37 |
26 31 36
|
mpbir2and |
|