Description: A closed enough, smaller real C has the same floor of A when both are divided by B . (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lefldiveq.a | |
|
lefldiveq.b | |
||
lefldiveq.c | |
||
Assertion | lefldiveq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lefldiveq.a | |
|
2 | lefldiveq.b | |
|
3 | lefldiveq.c | |
|
4 | moddiffl | |
|
5 | 1 2 4 | syl2anc | |
6 | 1 2 | rerpdivcld | |
7 | 6 | flcld | |
8 | 5 7 | eqeltrd | |
9 | flid | |
|
10 | 8 9 | syl | |
11 | 10 5 | eqtr2d | |
12 | 1 2 | modcld | |
13 | 1 12 | resubcld | |
14 | 13 2 | rerpdivcld | |
15 | iccssre | |
|
16 | 13 1 15 | syl2anc | |
17 | 16 3 | sseldd | |
18 | 17 2 | rerpdivcld | |
19 | 13 | rexrd | |
20 | 1 | rexrd | |
21 | iccgelb | |
|
22 | 19 20 3 21 | syl3anc | |
23 | 13 17 2 22 | lediv1dd | |
24 | flwordi | |
|
25 | 14 18 23 24 | syl3anc | |
26 | 11 25 | eqbrtrd | |
27 | iccleub | |
|
28 | 19 20 3 27 | syl3anc | |
29 | 17 1 2 28 | lediv1dd | |
30 | flwordi | |
|
31 | 18 6 29 30 | syl3anc | |
32 | reflcl | |
|
33 | 6 32 | syl | |
34 | reflcl | |
|
35 | 18 34 | syl | |
36 | 33 35 | letri3d | |
37 | 26 31 36 | mpbir2and | |