Metamath Proof Explorer


Theorem lefldiveq

Description: A closed enough, smaller real C has the same floor of A when both are divided by B . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lefldiveq.a φA
lefldiveq.b φB+
lefldiveq.c φCAAmodBA
Assertion lefldiveq φAB=CB

Proof

Step Hyp Ref Expression
1 lefldiveq.a φA
2 lefldiveq.b φB+
3 lefldiveq.c φCAAmodBA
4 moddiffl AB+AAmodBB=AB
5 1 2 4 syl2anc φAAmodBB=AB
6 1 2 rerpdivcld φAB
7 6 flcld φAB
8 5 7 eqeltrd φAAmodBB
9 flid AAmodBBAAmodBB=AAmodBB
10 8 9 syl φAAmodBB=AAmodBB
11 10 5 eqtr2d φAB=AAmodBB
12 1 2 modcld φAmodB
13 1 12 resubcld φAAmodB
14 13 2 rerpdivcld φAAmodBB
15 iccssre AAmodBAAAmodBA
16 13 1 15 syl2anc φAAmodBA
17 16 3 sseldd φC
18 17 2 rerpdivcld φCB
19 13 rexrd φAAmodB*
20 1 rexrd φA*
21 iccgelb AAmodB*A*CAAmodBAAAmodBC
22 19 20 3 21 syl3anc φAAmodBC
23 13 17 2 22 lediv1dd φAAmodBBCB
24 flwordi AAmodBBCBAAmodBBCBAAmodBBCB
25 14 18 23 24 syl3anc φAAmodBBCB
26 11 25 eqbrtrd φABCB
27 iccleub AAmodB*A*CAAmodBACA
28 19 20 3 27 syl3anc φCA
29 17 1 2 28 lediv1dd φCBAB
30 flwordi CBABCBABCBAB
31 18 6 29 30 syl3anc φCBAB
32 reflcl ABAB
33 6 32 syl φAB
34 reflcl CBCB
35 18 34 syl φCB
36 33 35 letri3d φAB=CBABCBCBAB
37 26 31 36 mpbir2and φAB=CB