Metamath Proof Explorer


Theorem lemuldiv

Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006)

Ref Expression
Assertion lemuldiv ABC0<CACBABC

Proof

Step Hyp Ref Expression
1 ltdivmul2 BAC0<CBC<AB<AC
2 1 3com12 ABC0<CBC<AB<AC
3 2 notbid ABC0<C¬BC<A¬B<AC
4 simp1 ABC0<CA
5 gt0ne0 C0<CC0
6 5 3adant1 BC0<CC0
7 redivcl BCC0BC
8 6 7 syld3an3 BC0<CBC
9 8 3expb BC0<CBC
10 9 3adant1 ABC0<CBC
11 4 10 lenltd ABC0<CABC¬BC<A
12 remulcl ACAC
13 12 3adant2 ABCAC
14 simp2 ABCB
15 13 14 lenltd ABCACB¬B<AC
16 15 3adant3r ABC0<CACB¬B<AC
17 3 11 16 3bitr4rd ABC0<CACBABC