Metamath Proof Explorer


Theorem lenegsq

Description: Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006)

Ref Expression
Assertion lenegsq AB0BABABA2B2

Proof

Step Hyp Ref Expression
1 recn AA
2 abscl AA
3 absge0 A0A
4 2 3 jca AA0A
5 1 4 syl AA0A
6 le2sq A0AB0BABA2B2
7 5 6 sylan AB0BABA2B2
8 absle ABABBAAB
9 lenegcon1 ABABBA
10 9 anbi1d ABABABBAAB
11 ancom ABABABAB
12 10 11 bitr3di ABBAABABAB
13 8 12 bitrd ABABABAB
14 13 adantrr AB0BABABAB
15 absresq AA2=A2
16 15 breq1d AA2B2A2B2
17 16 adantr AB0BA2B2A2B2
18 7 14 17 3bitr3d AB0BABABA2B2
19 18 3impb AB0BABABA2B2