Metamath Proof Explorer


Theorem leop3

Description: Operator ordering in terms of a positive operator. Definition of operator ordering in Retherford p. 49. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)

Ref Expression
Assertion leop3 THrmOpUHrmOpTopU0hopopU-opT

Proof

Step Hyp Ref Expression
1 leop THrmOpUHrmOpTopUx0U-opTxihx
2 0hmop 0hopHrmOp
3 hmopd UHrmOpTHrmOpU-opTHrmOp
4 3 ancoms THrmOpUHrmOpU-opTHrmOp
5 leop2 0hopHrmOpU-opTHrmOp0hopopU-opTx0hopxihxU-opTxihx
6 2 4 5 sylancr THrmOpUHrmOp0hopopU-opTx0hopxihxU-opTxihx
7 ho0val x0hopx=0
8 7 oveq1d x0hopxihx=0ihx
9 hi01 x0ihx=0
10 8 9 eqtrd x0hopxihx=0
11 10 breq1d x0hopxihxU-opTxihx0U-opTxihx
12 11 ralbiia x0hopxihxU-opTxihxx0U-opTxihx
13 6 12 bitr2di THrmOpUHrmOpx0U-opTxihx0hopopU-opT
14 1 13 bitrd THrmOpUHrmOpTopU0hopopU-opT