Metamath Proof Explorer


Theorem leopsq

Description: The square of a Hermitian operator is positive. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion leopsq THrmOp0hopopTT

Proof

Step Hyp Ref Expression
1 hmopf THrmOpT:
2 1 ffvelcdmda THrmOpxTx
3 hiidge0 Tx0TxihTx
4 2 3 syl THrmOpx0TxihTx
5 simpl THrmOpxTHrmOp
6 simpr THrmOpxx
7 hmop THrmOpTxxTxihTx=TTxihx
8 5 2 6 7 syl3anc THrmOpxTxihTx=TTxihx
9 fvco3 T:xTTx=TTx
10 1 9 sylan THrmOpxTTx=TTx
11 10 oveq1d THrmOpxTTxihx=TTxihx
12 8 11 eqtr4d THrmOpxTxihTx=TTxihx
13 4 12 breqtrd THrmOpx0TTxihx
14 13 ralrimiva THrmOpx0TTxihx
15 eqid TT=TT
16 hmopco THrmOpTHrmOpTT=TTTTHrmOp
17 15 16 mp3an3 THrmOpTHrmOpTTHrmOp
18 17 anidms THrmOpTTHrmOp
19 leoppos TTHrmOp0hopopTTx0TTxihx
20 18 19 syl THrmOp0hopopTTx0TTxihx
21 14 20 mpbird THrmOp0hopopTT