Metamath Proof Explorer


Theorem leopsq

Description: The square of a Hermitian operator is positive. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion leopsq T HrmOp 0 hop op T T

Proof

Step Hyp Ref Expression
1 hmopf T HrmOp T :
2 1 ffvelrnda T HrmOp x T x
3 hiidge0 T x 0 T x ih T x
4 2 3 syl T HrmOp x 0 T x ih T x
5 simpl T HrmOp x T HrmOp
6 simpr T HrmOp x x
7 hmop T HrmOp T x x T x ih T x = T T x ih x
8 5 2 6 7 syl3anc T HrmOp x T x ih T x = T T x ih x
9 fvco3 T : x T T x = T T x
10 1 9 sylan T HrmOp x T T x = T T x
11 10 oveq1d T HrmOp x T T x ih x = T T x ih x
12 8 11 eqtr4d T HrmOp x T x ih T x = T T x ih x
13 4 12 breqtrd T HrmOp x 0 T T x ih x
14 13 ralrimiva T HrmOp x 0 T T x ih x
15 eqid T T = T T
16 hmopco T HrmOp T HrmOp T T = T T T T HrmOp
17 15 16 mp3an3 T HrmOp T HrmOp T T HrmOp
18 17 anidms T HrmOp T T HrmOp
19 leoppos T T HrmOp 0 hop op T T x 0 T T x ih x
20 18 19 syl T HrmOp 0 hop op T T x 0 T T x ih x
21 14 20 mpbird T HrmOp 0 hop op T T