Metamath Proof Explorer


Theorem leordtvallem2

Description: Lemma for leordtval . (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses leordtval.1 A=ranx*x+∞
leordtval.2 B=ranx*−∞x
Assertion leordtvallem2 B=ranx*y*|¬xy

Proof

Step Hyp Ref Expression
1 leordtval.1 A=ranx*x+∞
2 leordtval.2 B=ranx*−∞x
3 icossxr −∞x*
4 sseqin2 −∞x**−∞x=−∞x
5 3 4 mpbi *−∞x=−∞x
6 mnfxr −∞*
7 simpl x*y*x*
8 elico1 −∞*x*y−∞xy*−∞yy<x
9 6 7 8 sylancr x*y*y−∞xy*−∞yy<x
10 simpr x*y*y*
11 mnfle y*−∞y
12 10 11 jccir x*y*y*−∞y
13 12 biantrurd x*y*y<xy*−∞yy<x
14 df-3an y*−∞yy<xy*−∞yy<x
15 13 14 bitr4di x*y*y<xy*−∞yy<x
16 xrltnle y*x*y<x¬xy
17 16 ancoms x*y*y<x¬xy
18 9 15 17 3bitr2d x*y*y−∞x¬xy
19 18 rabbi2dva x**−∞x=y*|¬xy
20 5 19 eqtr3id x*−∞x=y*|¬xy
21 20 mpteq2ia x*−∞x=x*y*|¬xy
22 21 rneqi ranx*−∞x=ranx*y*|¬xy
23 2 22 eqtri B=ranx*y*|¬xy