Metamath Proof Explorer


Theorem lgsdir2lem2

Description: Lemma for lgsdir2 . (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypotheses lgsdir2lem2.1 K2K+1A¬2AAmod80KAmod8S
lgsdir2lem2.2 M=K+1
lgsdir2lem2.3 N=M+1
lgsdir2lem2.4 NS
Assertion lgsdir2lem2 N2N+1A¬2AAmod80NAmod8S

Proof

Step Hyp Ref Expression
1 lgsdir2lem2.1 K2K+1A¬2AAmod80KAmod8S
2 lgsdir2lem2.2 M=K+1
3 lgsdir2lem2.3 N=M+1
4 lgsdir2lem2.4 NS
5 1 simp1i K
6 peano2z KK+1
7 5 6 ax-mp K+1
8 2 7 eqeltri M
9 peano2z MM+1
10 8 9 ax-mp M+1
11 3 10 eqeltri N
12 1 simp2i 2K+1
13 2z 2
14 dvdsadd 2K+12K+122+K+1
15 13 7 14 mp2an 2K+122+K+1
16 12 15 mpbi 22+K+1
17 zcn KK
18 5 17 ax-mp K
19 ax-1cn 1
20 18 19 addcomi K+1=1+K
21 2 20 eqtri M=1+K
22 21 oveq1i M+1=1+K+1
23 3 22 eqtri N=1+K+1
24 df-2 2=1+1
25 24 oveq1i 2+K=1+1+K
26 19 18 19 add32i 1+K+1=1+1+K
27 25 26 eqtr4i 2+K=1+K+1
28 23 27 eqtr4i N=2+K
29 28 oveq1i N+1=2+K+1
30 2cn 2
31 30 18 19 addassi 2+K+1=2+K+1
32 29 31 eqtri N+1=2+K+1
33 16 32 breqtrri 2N+1
34 elfzuz2 Amod80NN0
35 fzm1 N0Amod80NAmod80N1Amod8=N
36 34 35 syl Amod80NAmod80NAmod80N1Amod8=N
37 36 ibi Amod80NAmod80N1Amod8=N
38 elfzuz2 Amod80MM0
39 fzm1 M0Amod80MAmod80M1Amod8=M
40 38 39 syl Amod80MAmod80MAmod80M1Amod8=M
41 40 ibi Amod80MAmod80M1Amod8=M
42 zcn MM
43 8 42 ax-mp M
44 43 19 3 mvrraddi N1=M
45 44 oveq2i 0N1=0M
46 41 45 eleq2s Amod80N1Amod80M1Amod8=M
47 18 19 2 mvrraddi M1=K
48 47 oveq2i 0M1=0K
49 48 eleq2i Amod80M1Amod80K
50 1 simp3i A¬2AAmod80KAmod8S
51 49 50 biimtrid A¬2AAmod80M1Amod8S
52 2nn 2
53 8nn 8
54 4z 4
55 dvdsmul2 42242
56 54 13 55 mp2an 242
57 4t2e8 42=8
58 56 57 breqtri 28
59 dvdsmod 28A282Amod82A
60 58 59 mpan2 28A2Amod82A
61 52 53 60 mp3an12 A2Amod82A
62 61 notbid A¬2Amod8¬2A
63 62 biimpar A¬2A¬2Amod8
64 12 2 breqtrri 2M
65 id Amod8=MAmod8=M
66 64 65 breqtrrid Amod8=M2Amod8
67 63 66 nsyl A¬2A¬Amod8=M
68 67 pm2.21d A¬2AAmod8=MAmod8S
69 51 68 jaod A¬2AAmod80M1Amod8=MAmod8S
70 46 69 syl5 A¬2AAmod80N1Amod8S
71 eleq1 Amod8=NAmod8SNS
72 4 71 mpbiri Amod8=NAmod8S
73 72 a1i A¬2AAmod8=NAmod8S
74 70 73 jaod A¬2AAmod80N1Amod8=NAmod8S
75 37 74 syl5 A¬2AAmod80NAmod8S
76 11 33 75 3pm3.2i N2N+1A¬2AAmod80NAmod8S