Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic residues and the Legendre symbol
lgsdir2lem2
Next ⟩
lgsdir2lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
lgsdir2lem2
Description:
Lemma for
lgsdir2
.
(Contributed by
Mario Carneiro
, 4-Feb-2015)
Ref
Expression
Hypotheses
lgsdir2lem2.1
⊢
K
∈
ℤ
∧
2
∥
K
+
1
∧
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
K
→
A
mod
8
∈
S
lgsdir2lem2.2
⊢
M
=
K
+
1
lgsdir2lem2.3
⊢
N
=
M
+
1
lgsdir2lem2.4
⊢
N
∈
S
Assertion
lgsdir2lem2
⊢
N
∈
ℤ
∧
2
∥
N
+
1
∧
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
N
→
A
mod
8
∈
S
Proof
Step
Hyp
Ref
Expression
1
lgsdir2lem2.1
⊢
K
∈
ℤ
∧
2
∥
K
+
1
∧
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
K
→
A
mod
8
∈
S
2
lgsdir2lem2.2
⊢
M
=
K
+
1
3
lgsdir2lem2.3
⊢
N
=
M
+
1
4
lgsdir2lem2.4
⊢
N
∈
S
5
1
simp1i
⊢
K
∈
ℤ
6
peano2z
⊢
K
∈
ℤ
→
K
+
1
∈
ℤ
7
5
6
ax-mp
⊢
K
+
1
∈
ℤ
8
2
7
eqeltri
⊢
M
∈
ℤ
9
peano2z
⊢
M
∈
ℤ
→
M
+
1
∈
ℤ
10
8
9
ax-mp
⊢
M
+
1
∈
ℤ
11
3
10
eqeltri
⊢
N
∈
ℤ
12
1
simp2i
⊢
2
∥
K
+
1
13
2z
⊢
2
∈
ℤ
14
dvdsadd
⊢
2
∈
ℤ
∧
K
+
1
∈
ℤ
→
2
∥
K
+
1
↔
2
∥
2
+
K
+
1
15
13
7
14
mp2an
⊢
2
∥
K
+
1
↔
2
∥
2
+
K
+
1
16
12
15
mpbi
⊢
2
∥
2
+
K
+
1
17
zcn
⊢
K
∈
ℤ
→
K
∈
ℂ
18
5
17
ax-mp
⊢
K
∈
ℂ
19
ax-1cn
⊢
1
∈
ℂ
20
18
19
addcomi
⊢
K
+
1
=
1
+
K
21
2
20
eqtri
⊢
M
=
1
+
K
22
21
oveq1i
⊢
M
+
1
=
1
+
K
+
1
23
3
22
eqtri
⊢
N
=
1
+
K
+
1
24
df-2
⊢
2
=
1
+
1
25
24
oveq1i
⊢
2
+
K
=
1
+
1
+
K
26
19
18
19
add32i
⊢
1
+
K
+
1
=
1
+
1
+
K
27
25
26
eqtr4i
⊢
2
+
K
=
1
+
K
+
1
28
23
27
eqtr4i
⊢
N
=
2
+
K
29
28
oveq1i
⊢
N
+
1
=
2
+
K
+
1
30
2cn
⊢
2
∈
ℂ
31
30
18
19
addassi
⊢
2
+
K
+
1
=
2
+
K
+
1
32
29
31
eqtri
⊢
N
+
1
=
2
+
K
+
1
33
16
32
breqtrri
⊢
2
∥
N
+
1
34
elfzuz2
⊢
A
mod
8
∈
0
…
N
→
N
∈
ℤ
≥
0
35
fzm1
⊢
N
∈
ℤ
≥
0
→
A
mod
8
∈
0
…
N
↔
A
mod
8
∈
0
…
N
−
1
∨
A
mod
8
=
N
36
34
35
syl
⊢
A
mod
8
∈
0
…
N
→
A
mod
8
∈
0
…
N
↔
A
mod
8
∈
0
…
N
−
1
∨
A
mod
8
=
N
37
36
ibi
⊢
A
mod
8
∈
0
…
N
→
A
mod
8
∈
0
…
N
−
1
∨
A
mod
8
=
N
38
elfzuz2
⊢
A
mod
8
∈
0
…
M
→
M
∈
ℤ
≥
0
39
fzm1
⊢
M
∈
ℤ
≥
0
→
A
mod
8
∈
0
…
M
↔
A
mod
8
∈
0
…
M
−
1
∨
A
mod
8
=
M
40
38
39
syl
⊢
A
mod
8
∈
0
…
M
→
A
mod
8
∈
0
…
M
↔
A
mod
8
∈
0
…
M
−
1
∨
A
mod
8
=
M
41
40
ibi
⊢
A
mod
8
∈
0
…
M
→
A
mod
8
∈
0
…
M
−
1
∨
A
mod
8
=
M
42
zcn
⊢
M
∈
ℤ
→
M
∈
ℂ
43
8
42
ax-mp
⊢
M
∈
ℂ
44
43
19
3
mvrraddi
⊢
N
−
1
=
M
45
44
oveq2i
⊢
0
…
N
−
1
=
0
…
M
46
41
45
eleq2s
⊢
A
mod
8
∈
0
…
N
−
1
→
A
mod
8
∈
0
…
M
−
1
∨
A
mod
8
=
M
47
18
19
2
mvrraddi
⊢
M
−
1
=
K
48
47
oveq2i
⊢
0
…
M
−
1
=
0
…
K
49
48
eleq2i
⊢
A
mod
8
∈
0
…
M
−
1
↔
A
mod
8
∈
0
…
K
50
1
simp3i
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
K
→
A
mod
8
∈
S
51
49
50
biimtrid
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
M
−
1
→
A
mod
8
∈
S
52
2nn
⊢
2
∈
ℕ
53
8nn
⊢
8
∈
ℕ
54
4z
⊢
4
∈
ℤ
55
dvdsmul2
⊢
4
∈
ℤ
∧
2
∈
ℤ
→
2
∥
4
⋅
2
56
54
13
55
mp2an
⊢
2
∥
4
⋅
2
57
4t2e8
⊢
4
⋅
2
=
8
58
56
57
breqtri
⊢
2
∥
8
59
dvdsmod
⊢
2
∈
ℕ
∧
8
∈
ℕ
∧
A
∈
ℤ
∧
2
∥
8
→
2
∥
A
mod
8
↔
2
∥
A
60
58
59
mpan2
⊢
2
∈
ℕ
∧
8
∈
ℕ
∧
A
∈
ℤ
→
2
∥
A
mod
8
↔
2
∥
A
61
52
53
60
mp3an12
⊢
A
∈
ℤ
→
2
∥
A
mod
8
↔
2
∥
A
62
61
notbid
⊢
A
∈
ℤ
→
¬
2
∥
A
mod
8
↔
¬
2
∥
A
63
62
biimpar
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
¬
2
∥
A
mod
8
64
12
2
breqtrri
⊢
2
∥
M
65
id
⊢
A
mod
8
=
M
→
A
mod
8
=
M
66
64
65
breqtrrid
⊢
A
mod
8
=
M
→
2
∥
A
mod
8
67
63
66
nsyl
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
¬
A
mod
8
=
M
68
67
pm2.21d
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
=
M
→
A
mod
8
∈
S
69
51
68
jaod
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
M
−
1
∨
A
mod
8
=
M
→
A
mod
8
∈
S
70
46
69
syl5
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
N
−
1
→
A
mod
8
∈
S
71
eleq1
⊢
A
mod
8
=
N
→
A
mod
8
∈
S
↔
N
∈
S
72
4
71
mpbiri
⊢
A
mod
8
=
N
→
A
mod
8
∈
S
73
72
a1i
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
=
N
→
A
mod
8
∈
S
74
70
73
jaod
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
N
−
1
∨
A
mod
8
=
N
→
A
mod
8
∈
S
75
37
74
syl5
⊢
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
N
→
A
mod
8
∈
S
76
11
33
75
3pm3.2i
⊢
N
∈
ℤ
∧
2
∥
N
+
1
∧
A
∈
ℤ
∧
¬
2
∥
A
→
A
mod
8
∈
0
…
N
→
A
mod
8
∈
S