Metamath Proof Explorer


Theorem lhp2at0nle

Description: Inequality for 2 different atoms (or an atom and zero) under co-atom W . (Contributed by NM, 28-Jul-2013)

Ref Expression
Hypotheses lhp2at0nle.l ˙=K
lhp2at0nle.j ˙=joinK
lhp2at0nle.z 0˙=0.K
lhp2at0nle.a A=AtomsK
lhp2at0nle.h H=LHypK
Assertion lhp2at0nle KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙W¬V˙P˙U

Proof

Step Hyp Ref Expression
1 lhp2at0nle.l ˙=K
2 lhp2at0nle.j ˙=joinK
3 lhp2at0nle.z 0˙=0.K
4 lhp2at0nle.a A=AtomsK
5 lhp2at0nle.h H=LHypK
6 simpl1 KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WUAKHLWHPA¬P˙WUV
7 simpr KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WUAUA
8 simpl2r KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WUAU˙W
9 simpl3 KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WUAVAV˙W
10 1 2 4 5 lhp2atnle KHLWHPA¬P˙WUVUAU˙WVAV˙W¬V˙P˙U
11 6 7 8 9 10 syl121anc KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WUA¬V˙P˙U
12 simp3r KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WV˙W
13 simp12r KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙W¬P˙W
14 nbrne2 V˙W¬P˙WVP
15 12 13 14 syl2anc KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WVP
16 15 neneqd KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙W¬V=P
17 simp11l KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WKHL
18 hlatl KHLKAtLat
19 17 18 syl KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WKAtLat
20 simp3l KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WVA
21 simp12l KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WPA
22 1 4 atcmp KAtLatVAPAV˙PV=P
23 19 20 21 22 syl3anc KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WV˙PV=P
24 16 23 mtbird KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙W¬V˙P
25 24 adantr KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WU=0˙¬V˙P
26 oveq2 U=0˙P˙U=P˙0˙
27 hlol KHLKOL
28 17 27 syl KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WKOL
29 eqid BaseK=BaseK
30 29 4 atbase PAPBaseK
31 21 30 syl KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WPBaseK
32 29 2 3 olj01 KOLPBaseKP˙0˙=P
33 28 31 32 syl2anc KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WP˙0˙=P
34 26 33 sylan9eqr KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WU=0˙P˙U=P
35 34 breq2d KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WU=0˙V˙P˙UV˙P
36 25 35 mtbird KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WU=0˙¬V˙P˙U
37 simp2l KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙WUAU=0˙
38 11 36 37 mpjaodan KHLWHPA¬P˙WUVUAU=0˙U˙WVAV˙W¬V˙P˙U