Metamath Proof Explorer


Theorem lhpmod6i1

Description: Modular law for hyperplanes analogous to complement of atmod2i1 for atoms. (Contributed by NM, 1-Jun-2013)

Ref Expression
Hypotheses lhpmod.b B=BaseK
lhpmod.l ˙=K
lhpmod.j ˙=joinK
lhpmod.m ˙=meetK
lhpmod.h H=LHypK
Assertion lhpmod6i1 KHLWHXBYBX˙WX˙Y˙W=X˙Y˙W

Proof

Step Hyp Ref Expression
1 lhpmod.b B=BaseK
2 lhpmod.l ˙=K
3 lhpmod.j ˙=joinK
4 lhpmod.m ˙=meetK
5 lhpmod.h H=LHypK
6 simp1l KHLWHXBYBX˙WKHL
7 simp1r KHLWHXBYBX˙WWH
8 eqid ocK=ocK
9 eqid AtomsK=AtomsK
10 8 9 5 lhpocat KHLWHocKWAtomsK
11 6 7 10 syl2anc KHLWHXBYBX˙WocKWAtomsK
12 hlop KHLKOP
13 6 12 syl KHLWHXBYBX˙WKOP
14 simp2l KHLWHXBYBX˙WXB
15 1 8 opoccl KOPXBocKXB
16 13 14 15 syl2anc KHLWHXBYBX˙WocKXB
17 simp2r KHLWHXBYBX˙WYB
18 1 8 opoccl KOPYBocKYB
19 13 17 18 syl2anc KHLWHXBYBX˙WocKYB
20 simp3 KHLWHXBYBX˙WX˙W
21 1 5 lhpbase WHWB
22 7 21 syl KHLWHXBYBX˙WWB
23 1 2 8 oplecon3b KOPXBWBX˙WocKW˙ocKX
24 13 14 22 23 syl3anc KHLWHXBYBX˙WX˙WocKW˙ocKX
25 20 24 mpbid KHLWHXBYBX˙WocKW˙ocKX
26 1 2 3 4 9 atmod2i1 KHLocKWAtomsKocKXBocKYBocKW˙ocKXocKX˙ocKY˙ocKW=ocKX˙ocKY˙ocKW
27 6 11 16 19 25 26 syl131anc KHLWHXBYBX˙WocKX˙ocKY˙ocKW=ocKX˙ocKY˙ocKW
28 6 hllatd KHLWHXBYBX˙WKLat
29 1 4 latmcl KLatYBWBY˙WB
30 28 17 22 29 syl3anc KHLWHXBYBX˙WY˙WB
31 1 3 latjcl KLatXBY˙WBX˙Y˙WB
32 28 14 30 31 syl3anc KHLWHXBYBX˙WX˙Y˙WB
33 1 3 latjcl KLatXBYBX˙YB
34 28 14 17 33 syl3anc KHLWHXBYBX˙WX˙YB
35 1 4 latmcl KLatX˙YBWBX˙Y˙WB
36 28 34 22 35 syl3anc KHLWHXBYBX˙WX˙Y˙WB
37 1 8 opcon3b KOPX˙Y˙WBX˙Y˙WBX˙Y˙W=X˙Y˙WocKX˙Y˙W=ocKX˙Y˙W
38 13 32 36 37 syl3anc KHLWHXBYBX˙WX˙Y˙W=X˙Y˙WocKX˙Y˙W=ocKX˙Y˙W
39 hlol KHLKOL
40 6 39 syl KHLWHXBYBX˙WKOL
41 1 3 4 8 oldmm1 KOLX˙YBWBocKX˙Y˙W=ocKX˙Y˙ocKW
42 40 34 22 41 syl3anc KHLWHXBYBX˙WocKX˙Y˙W=ocKX˙Y˙ocKW
43 1 3 4 8 oldmj1 KOLXBYBocKX˙Y=ocKX˙ocKY
44 40 14 17 43 syl3anc KHLWHXBYBX˙WocKX˙Y=ocKX˙ocKY
45 44 oveq1d KHLWHXBYBX˙WocKX˙Y˙ocKW=ocKX˙ocKY˙ocKW
46 42 45 eqtrd KHLWHXBYBX˙WocKX˙Y˙W=ocKX˙ocKY˙ocKW
47 1 3 4 8 oldmj1 KOLXBY˙WBocKX˙Y˙W=ocKX˙ocKY˙W
48 40 14 30 47 syl3anc KHLWHXBYBX˙WocKX˙Y˙W=ocKX˙ocKY˙W
49 1 3 4 8 oldmm1 KOLYBWBocKY˙W=ocKY˙ocKW
50 40 17 22 49 syl3anc KHLWHXBYBX˙WocKY˙W=ocKY˙ocKW
51 50 oveq2d KHLWHXBYBX˙WocKX˙ocKY˙W=ocKX˙ocKY˙ocKW
52 48 51 eqtrd KHLWHXBYBX˙WocKX˙Y˙W=ocKX˙ocKY˙ocKW
53 46 52 eqeq12d KHLWHXBYBX˙WocKX˙Y˙W=ocKX˙Y˙WocKX˙ocKY˙ocKW=ocKX˙ocKY˙ocKW
54 38 53 bitrd KHLWHXBYBX˙WX˙Y˙W=X˙Y˙WocKX˙ocKY˙ocKW=ocKX˙ocKY˙ocKW
55 27 54 mpbird KHLWHXBYBX˙WX˙Y˙W=X˙Y˙W