Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfgelimsup.1 | |
|
liminfgelimsup.2 | |
||
Assertion | liminfgelimsup | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfgelimsup.1 | |
|
2 | liminfgelimsup.2 | |
|
3 | 1 | liminfcld | |
4 | 3 | adantr | |
5 | 1 | limsupcld | |
6 | 5 | adantr | |
7 | 1 2 | liminflelimsup | |
8 | 7 | adantr | |
9 | simpr | |
|
10 | 4 6 8 9 | xrletrid | |
11 | 5 | adantr | |
12 | id | |
|
13 | 12 | eqcomd | |
14 | 13 | adantl | |
15 | 11 14 | xreqled | |
16 | 10 15 | impbida | |