Metamath Proof Explorer


Theorem liminfgelimsup

Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfgelimsup.1 φ F V
liminfgelimsup.2 φ k j k +∞ F j +∞ *
Assertion liminfgelimsup φ lim sup F lim inf F lim inf F = lim sup F

Proof

Step Hyp Ref Expression
1 liminfgelimsup.1 φ F V
2 liminfgelimsup.2 φ k j k +∞ F j +∞ *
3 1 liminfcld φ lim inf F *
4 3 adantr φ lim sup F lim inf F lim inf F *
5 1 limsupcld φ lim sup F *
6 5 adantr φ lim sup F lim inf F lim sup F *
7 1 2 liminflelimsup φ lim inf F lim sup F
8 7 adantr φ lim sup F lim inf F lim inf F lim sup F
9 simpr φ lim sup F lim inf F lim sup F lim inf F
10 4 6 8 9 xrletrid φ lim sup F lim inf F lim inf F = lim sup F
11 5 adantr φ lim inf F = lim sup F lim sup F *
12 id lim inf F = lim sup F lim inf F = lim sup F
13 12 eqcomd lim inf F = lim sup F lim sup F = lim inf F
14 13 adantl φ lim inf F = lim sup F lim sup F = lim inf F
15 11 14 xreqled φ lim inf F = lim sup F lim sup F lim inf F
16 10 15 impbida φ lim sup F lim inf F lim inf F = lim sup F