Metamath Proof Explorer


Theorem liminfgelimsup

Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfgelimsup.1 φFV
liminfgelimsup.2 φkjk+∞Fj+∞*
Assertion liminfgelimsup φlim supFlim infFlim infF=lim supF

Proof

Step Hyp Ref Expression
1 liminfgelimsup.1 φFV
2 liminfgelimsup.2 φkjk+∞Fj+∞*
3 1 liminfcld φlim infF*
4 3 adantr φlim supFlim infFlim infF*
5 1 limsupcld φlim supF*
6 5 adantr φlim supFlim infFlim supF*
7 1 2 liminflelimsup φlim infFlim supF
8 7 adantr φlim supFlim infFlim infFlim supF
9 simpr φlim supFlim infFlim supFlim infF
10 4 6 8 9 xrletrid φlim supFlim infFlim infF=lim supF
11 5 adantr φlim infF=lim supFlim supF*
12 id lim infF=lim supFlim infF=lim supF
13 12 eqcomd lim infF=lim supFlim supF=lim infF
14 13 adantl φlim infF=lim supFlim supF=lim infF
15 11 14 xreqled φlim infF=lim supFlim supFlim infF
16 10 15 impbida φlim supFlim infFlim infF=lim supF