Metamath Proof Explorer


Theorem liminflelimsup

Description: The superior limit is greater than or equal to the inferior limit. The second hypothesis is needed (see liminflelimsupcex for a counterexample). The inequality can be strict, see liminfltlimsupex . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminflelimsup.1 φ F V
liminflelimsup.2 φ k j k +∞ F j +∞ *
Assertion liminflelimsup φ lim inf F lim sup F

Proof

Step Hyp Ref Expression
1 liminflelimsup.1 φ F V
2 liminflelimsup.2 φ k j k +∞ F j +∞ *
3 oveq1 k = i k +∞ = i +∞
4 3 rexeqdv k = i j k +∞ F j +∞ * j i +∞ F j +∞ *
5 oveq1 j = l j +∞ = l +∞
6 5 imaeq2d j = l F j +∞ = F l +∞
7 6 ineq1d j = l F j +∞ * = F l +∞ *
8 7 neeq1d j = l F j +∞ * F l +∞ *
9 8 cbvrexvw j i +∞ F j +∞ * l i +∞ F l +∞ *
10 9 a1i k = i j i +∞ F j +∞ * l i +∞ F l +∞ *
11 4 10 bitrd k = i j k +∞ F j +∞ * l i +∞ F l +∞ *
12 11 cbvralvw k j k +∞ F j +∞ * i l i +∞ F l +∞ *
13 2 12 sylib φ i l i +∞ F l +∞ *
14 1 13 liminflelimsuplem φ lim inf F lim sup F