Metamath Proof Explorer


Theorem limsuppnf

Description: If the restriction of a function to every upper interval is unbounded above, its limsup is +oo . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsuppnf.j _ j F
limsuppnf.a φ A
limsuppnf.f φ F : A *
Assertion limsuppnf φ lim sup F = +∞ x k j A k j x F j

Proof

Step Hyp Ref Expression
1 limsuppnf.j _ j F
2 limsuppnf.a φ A
3 limsuppnf.f φ F : A *
4 nfcv _ l F
5 4 2 3 limsuppnflem φ lim sup F = +∞ y i l A i l y F l
6 breq1 i = k i l k l
7 6 anbi1d i = k i l y F l k l y F l
8 7 rexbidv i = k l A i l y F l l A k l y F l
9 nfv j k l
10 nfcv _ j y
11 nfcv _ j
12 nfcv _ j l
13 1 12 nffv _ j F l
14 10 11 13 nfbr j y F l
15 9 14 nfan j k l y F l
16 nfv l k j y F j
17 breq2 l = j k l k j
18 fveq2 l = j F l = F j
19 18 breq2d l = j y F l y F j
20 17 19 anbi12d l = j k l y F l k j y F j
21 15 16 20 cbvrexw l A k l y F l j A k j y F j
22 21 a1i i = k l A k l y F l j A k j y F j
23 8 22 bitrd i = k l A i l y F l j A k j y F j
24 23 cbvralvw i l A i l y F l k j A k j y F j
25 24 a1i y = x i l A i l y F l k j A k j y F j
26 breq1 y = x y F j x F j
27 26 anbi2d y = x k j y F j k j x F j
28 27 rexbidv y = x j A k j y F j j A k j x F j
29 28 ralbidv y = x k j A k j y F j k j A k j x F j
30 25 29 bitrd y = x i l A i l y F l k j A k j x F j
31 30 cbvralvw y i l A i l y F l x k j A k j x F j
32 31 a1i φ y i l A i l y F l x k j A k j x F j
33 5 32 bitrd φ lim sup F = +∞ x k j A k j x F j