Metamath Proof Explorer


Theorem limsupresre

Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis limsupresre.1 φFV
Assertion limsupresre φlim supF=lim supF

Proof

Step Hyp Ref Expression
1 limsupresre.1 φFV
2 id kk
3 pnfxr +∞*
4 3 a1i k+∞*
5 icossre k+∞*k+∞
6 2 4 5 syl2anc kk+∞
7 resima2 k+∞Fk+∞=Fk+∞
8 6 7 syl kFk+∞=Fk+∞
9 8 ineq1d kFk+∞*=Fk+∞*
10 9 supeq1d ksupFk+∞**<=supFk+∞**<
11 10 mpteq2ia ksupFk+∞**<=ksupFk+∞**<
12 11 a1i φksupFk+∞**<=ksupFk+∞**<
13 12 rneqd φranksupFk+∞**<=ranksupFk+∞**<
14 13 infeq1d φsupranksupFk+∞**<*<=supranksupFk+∞**<*<
15 1 resexd φFV
16 eqid ksupFk+∞**<=ksupFk+∞**<
17 16 limsupval FVlim supF=supranksupFk+∞**<*<
18 15 17 syl φlim supF=supranksupFk+∞**<*<
19 eqid ksupFk+∞**<=ksupFk+∞**<
20 19 limsupval FVlim supF=supranksupFk+∞**<*<
21 1 20 syl φlim supF=supranksupFk+∞**<*<
22 14 18 21 3eqtr4d φlim supF=lim supF