Metamath Proof Explorer


Theorem limsupresre

Description: The supremum limit of a function only depends on the real part of its domain. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis limsupresre.1 φ F V
Assertion limsupresre φ lim sup F = lim sup F

Proof

Step Hyp Ref Expression
1 limsupresre.1 φ F V
2 id k k
3 pnfxr +∞ *
4 3 a1i k +∞ *
5 icossre k +∞ * k +∞
6 2 4 5 syl2anc k k +∞
7 resima2 k +∞ F k +∞ = F k +∞
8 6 7 syl k F k +∞ = F k +∞
9 8 ineq1d k F k +∞ * = F k +∞ *
10 9 supeq1d k sup F k +∞ * * < = sup F k +∞ * * <
11 10 mpteq2ia k sup F k +∞ * * < = k sup F k +∞ * * <
12 11 a1i φ k sup F k +∞ * * < = k sup F k +∞ * * <
13 12 rneqd φ ran k sup F k +∞ * * < = ran k sup F k +∞ * * <
14 13 infeq1d φ sup ran k sup F k +∞ * * < * < = sup ran k sup F k +∞ * * < * <
15 1 resexd φ F V
16 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
17 16 limsupval F V lim sup F = sup ran k sup F k +∞ * * < * <
18 15 17 syl φ lim sup F = sup ran k sup F k +∞ * * < * <
19 eqid k sup F k +∞ * * < = k sup F k +∞ * * <
20 19 limsupval F V lim sup F = sup ran k sup F k +∞ * * < * <
21 1 20 syl φ lim sup F = sup ran k sup F k +∞ * * < * <
22 14 18 21 3eqtr4d φ lim sup F = lim sup F