Metamath Proof Explorer


Theorem lincresunitlem2

Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit.b B=BaseM
lincresunit.r R=ScalarM
lincresunit.e E=BaseR
lincresunit.u U=UnitR
lincresunit.0 0˙=0R
lincresunit.z Z=0M
lincresunit.n N=invgR
lincresunit.i I=invrR
lincresunit.t ·˙=R
lincresunit.g G=sSXINFX·˙Fs
Assertion lincresunitlem2 S𝒫BMLModXSFESFXUYSINFX·˙FYE

Proof

Step Hyp Ref Expression
1 lincresunit.b B=BaseM
2 lincresunit.r R=ScalarM
3 lincresunit.e E=BaseR
4 lincresunit.u U=UnitR
5 lincresunit.0 0˙=0R
6 lincresunit.z Z=0M
7 lincresunit.n N=invgR
8 lincresunit.i I=invrR
9 lincresunit.t ·˙=R
10 lincresunit.g G=sSXINFX·˙Fs
11 2 lmodring MLModRRing
12 11 3ad2ant2 S𝒫BMLModXSRRing
13 12 adantr S𝒫BMLModXSFESFXURRing
14 13 adantr S𝒫BMLModXSFESFXUYSRRing
15 1 2 3 4 5 6 7 8 9 10 lincresunitlem1 S𝒫BMLModXSFESFXUINFXE
16 15 adantr S𝒫BMLModXSFESFXUYSINFXE
17 elmapi FESF:SE
18 ffvelcdm F:SEYSFYE
19 18 ex F:SEYSFYE
20 17 19 syl FESYSFYE
21 20 ad2antrl S𝒫BMLModXSFESFXUYSFYE
22 21 imp S𝒫BMLModXSFESFXUYSFYE
23 3 9 ringcl RRingINFXEFYEINFX·˙FYE
24 14 16 22 23 syl3anc S𝒫BMLModXSFESFXUYSINFX·˙FYE