Description: Lemma for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lincresunit.b | |
|
lincresunit.r | |
||
lincresunit.e | |
||
lincresunit.u | |
||
lincresunit.0 | |
||
lincresunit.z | |
||
lincresunit.n | |
||
lincresunit.i | |
||
lincresunit.t | |
||
lincresunit.g | |
||
Assertion | lincresunitlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincresunit.b | |
|
2 | lincresunit.r | |
|
3 | lincresunit.e | |
|
4 | lincresunit.u | |
|
5 | lincresunit.0 | |
|
6 | lincresunit.z | |
|
7 | lincresunit.n | |
|
8 | lincresunit.i | |
|
9 | lincresunit.t | |
|
10 | lincresunit.g | |
|
11 | 2 | lmodring | |
12 | 11 | 3ad2ant2 | |
13 | 12 | adantr | |
14 | 13 | adantr | |
15 | 1 2 3 4 5 6 7 8 9 10 | lincresunitlem1 | |
16 | 15 | adantr | |
17 | elmapi | |
|
18 | ffvelcdm | |
|
19 | 18 | ex | |
20 | 17 19 | syl | |
21 | 20 | ad2antrl | |
22 | 21 | imp | |
23 | 3 9 | ringcl | |
24 | 14 16 22 23 | syl3anc | |