Metamath Proof Explorer


Theorem linds0

Description: The empty set is always a linearly independent subset. (Contributed by AV, 13-Apr-2019) (Revised by AV, 27-Apr-2019) (Proof shortened by AV, 30-Jul-2019)

Ref Expression
Assertion linds0 MVlinIndSM

Proof

Step Hyp Ref Expression
1 ral0 xx=0ScalarM
2 1 2a1i MVfinSupp0ScalarMlinCM=0Mxx=0ScalarM
3 0ex V
4 breq1 f=finSupp0ScalarMffinSupp0ScalarM
5 oveq1 f=flinCM=linCM
6 5 eqeq1d f=flinCM=0MlinCM=0M
7 4 6 anbi12d f=finSupp0ScalarMfflinCM=0MfinSupp0ScalarMlinCM=0M
8 fveq1 f=fx=x
9 8 eqeq1d f=fx=0ScalarMx=0ScalarM
10 9 ralbidv f=xfx=0ScalarMxx=0ScalarM
11 7 10 imbi12d f=finSupp0ScalarMfflinCM=0Mxfx=0ScalarMfinSupp0ScalarMlinCM=0Mxx=0ScalarM
12 11 ralsng VffinSupp0ScalarMfflinCM=0Mxfx=0ScalarMfinSupp0ScalarMlinCM=0Mxx=0ScalarM
13 3 12 mp1i MVffinSupp0ScalarMfflinCM=0Mxfx=0ScalarMfinSupp0ScalarMlinCM=0Mxx=0ScalarM
14 2 13 mpbird MVffinSupp0ScalarMfflinCM=0Mxfx=0ScalarM
15 fvex BaseScalarMV
16 map0e BaseScalarMVBaseScalarM=1𝑜
17 15 16 mp1i MVBaseScalarM=1𝑜
18 df1o2 1𝑜=
19 17 18 eqtrdi MVBaseScalarM=
20 19 raleqdv MVfBaseScalarMfinSupp0ScalarMfflinCM=0Mxfx=0ScalarMffinSupp0ScalarMfflinCM=0Mxfx=0ScalarM
21 14 20 mpbird MVfBaseScalarMfinSupp0ScalarMfflinCM=0Mxfx=0ScalarM
22 0elpw 𝒫BaseM
23 21 22 jctil MV𝒫BaseMfBaseScalarMfinSupp0ScalarMfflinCM=0Mxfx=0ScalarM
24 eqid BaseM=BaseM
25 eqid 0M=0M
26 eqid ScalarM=ScalarM
27 eqid BaseScalarM=BaseScalarM
28 eqid 0ScalarM=0ScalarM
29 24 25 26 27 28 islininds VMVlinIndSM𝒫BaseMfBaseScalarMfinSupp0ScalarMfflinCM=0Mxfx=0ScalarM
30 3 29 mpan MVlinIndSM𝒫BaseMfBaseScalarMfinSupp0ScalarMfflinCM=0Mxfx=0ScalarM
31 23 30 mpbird MVlinIndSM