Metamath Proof Explorer


Theorem lineintmo

Description: Two distinct lines intersect in at most one point. Theorem 6.21 of Schwabhauser p. 46. (Contributed by Scott Fenton, 29-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion lineintmo ALinesEEBLinesEEAB*xxAxB

Proof

Step Hyp Ref Expression
1 an4 xAxByAyBxAyAxByB
2 linethru ALinesEExAyAxyA=xLiney
3 2 3expa ALinesEExAyAxyA=xLiney
4 linethru BLinesEExByBxyB=xLiney
5 4 3expa BLinesEExByBxyB=xLiney
6 eqtr3 A=xLineyB=xLineyA=B
7 3 5 6 syl2an ALinesEExAyAxyBLinesEExByBxyA=B
8 7 anandirs ALinesEExAyABLinesEExByBxyA=B
9 8 ex ALinesEExAyABLinesEExByBxyA=B
10 9 necon1d ALinesEExAyABLinesEExByBABx=y
11 10 an4s ALinesEEBLinesEExAyAxByBABx=y
12 1 11 sylan2b ALinesEEBLinesEExAxByAyBABx=y
13 12 ex ALinesEEBLinesEExAxByAyBABx=y
14 13 com23 ALinesEEBLinesEEABxAxByAyBx=y
15 14 3impia ALinesEEBLinesEEABxAxByAyBx=y
16 15 alrimivv ALinesEEBLinesEEABxyxAxByAyBx=y
17 eleq1w x=yxAyA
18 eleq1w x=yxByB
19 17 18 anbi12d x=yxAxByAyB
20 19 mo4 *xxAxBxyxAxByAyBx=y
21 16 20 sylibr ALinesEEBLinesEEAB*xxAxB