Metamath Proof Explorer


Theorem llnmod2i2

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion llnmod2i2 KHLXBYBPAQAY˙XX˙P˙Q˙Y=X˙P˙Q˙Y

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 simp11 KHLXBYBPAQAY˙XKHL
7 6 hllatd KHLXBYBPAQAY˙XKLat
8 simp13 KHLXBYBPAQAY˙XYB
9 simp2l KHLXBYBPAQAY˙XPA
10 simp2r KHLXBYBPAQAY˙XQA
11 1 3 5 hlatjcl KHLPAQAP˙QB
12 6 9 10 11 syl3anc KHLXBYBPAQAY˙XP˙QB
13 simp12 KHLXBYBPAQAY˙XXB
14 1 4 latmcl KLatP˙QBXBP˙Q˙XB
15 7 12 13 14 syl3anc KHLXBYBPAQAY˙XP˙Q˙XB
16 1 3 latjcom KLatYBP˙Q˙XBY˙P˙Q˙X=P˙Q˙X˙Y
17 7 8 15 16 syl3anc KHLXBYBPAQAY˙XY˙P˙Q˙X=P˙Q˙X˙Y
18 1 3 latjcl KLatYBP˙QBY˙P˙QB
19 7 8 12 18 syl3anc KHLXBYBPAQAY˙XY˙P˙QB
20 1 4 latmcom KLatXBY˙P˙QBX˙Y˙P˙Q=Y˙P˙Q˙X
21 7 13 19 20 syl3anc KHLXBYBPAQAY˙XX˙Y˙P˙Q=Y˙P˙Q˙X
22 1 3 latjcom KLatP˙QBYBP˙Q˙Y=Y˙P˙Q
23 7 12 8 22 syl3anc KHLXBYBPAQAY˙XP˙Q˙Y=Y˙P˙Q
24 23 oveq2d KHLXBYBPAQAY˙XX˙P˙Q˙Y=X˙Y˙P˙Q
25 simp3 KHLXBYBPAQAY˙XY˙X
26 1 2 3 4 5 llnmod1i2 KHLYBXBPAQAY˙XY˙P˙Q˙X=Y˙P˙Q˙X
27 6 8 13 9 10 25 26 syl321anc KHLXBYBPAQAY˙XY˙P˙Q˙X=Y˙P˙Q˙X
28 21 24 27 3eqtr4d KHLXBYBPAQAY˙XX˙P˙Q˙Y=Y˙P˙Q˙X
29 1 4 latmcom KLatXBP˙QBX˙P˙Q=P˙Q˙X
30 7 13 12 29 syl3anc KHLXBYBPAQAY˙XX˙P˙Q=P˙Q˙X
31 30 oveq1d KHLXBYBPAQAY˙XX˙P˙Q˙Y=P˙Q˙X˙Y
32 17 28 31 3eqtr4rd KHLXBYBPAQAY˙XX˙P˙Q˙Y=X˙P˙Q˙Y