Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | atmod.b | |
|
atmod.l | |
||
atmod.j | |
||
atmod.m | |
||
atmod.a | |
||
Assertion | llnmod2i2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atmod.b | |
|
2 | atmod.l | |
|
3 | atmod.j | |
|
4 | atmod.m | |
|
5 | atmod.a | |
|
6 | simp11 | |
|
7 | 6 | hllatd | |
8 | simp13 | |
|
9 | simp2l | |
|
10 | simp2r | |
|
11 | 1 3 5 | hlatjcl | |
12 | 6 9 10 11 | syl3anc | |
13 | simp12 | |
|
14 | 1 4 | latmcl | |
15 | 7 12 13 14 | syl3anc | |
16 | 1 3 | latjcom | |
17 | 7 8 15 16 | syl3anc | |
18 | 1 3 | latjcl | |
19 | 7 8 12 18 | syl3anc | |
20 | 1 4 | latmcom | |
21 | 7 13 19 20 | syl3anc | |
22 | 1 3 | latjcom | |
23 | 7 12 8 22 | syl3anc | |
24 | 23 | oveq2d | |
25 | simp3 | |
|
26 | 1 2 3 4 5 | llnmod1i2 | |
27 | 6 8 13 9 10 25 26 | syl321anc | |
28 | 21 24 27 | 3eqtr4d | |
29 | 1 4 | latmcom | |
30 | 7 13 12 29 | syl3anc | |
31 | 30 | oveq1d | |
32 | 17 28 31 | 3eqtr4rd | |