Metamath Proof Explorer


Theorem lmatfvlem

Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020)

Ref Expression
Hypotheses lmatfval.m M = litMat W
lmatfval.n φ N
lmatfval.w φ W Word Word V
lmatfval.1 φ W = N
lmatfval.2 φ i 0 ..^ N W i = N
lmatfvlem.1 K 0
lmatfvlem.2 L 0
lmatfvlem.3 I N
lmatfvlem.4 J N
lmatfvlem.5 K + 1 = I
lmatfvlem.6 L + 1 = J
lmatfvlem.7 W K = X
lmatfvlem.8 φ X L = Y
Assertion lmatfvlem φ I M J = Y

Proof

Step Hyp Ref Expression
1 lmatfval.m M = litMat W
2 lmatfval.n φ N
3 lmatfval.w φ W Word Word V
4 lmatfval.1 φ W = N
5 lmatfval.2 φ i 0 ..^ N W i = N
6 lmatfvlem.1 K 0
7 lmatfvlem.2 L 0
8 lmatfvlem.3 I N
9 lmatfvlem.4 J N
10 lmatfvlem.5 K + 1 = I
11 lmatfvlem.6 L + 1 = J
12 lmatfvlem.7 W K = X
13 lmatfvlem.8 φ X L = Y
14 nn0p1nn K 0 K + 1
15 6 14 ax-mp K + 1
16 10 15 eqeltrri I
17 nnge1 I 1 I
18 16 17 ax-mp 1 I
19 18 8 pm3.2i 1 I I N
20 19 a1i φ 1 I I N
21 nnz I I
22 16 21 ax-mp I
23 22 a1i φ I
24 1z 1
25 24 a1i φ 1
26 2 nnzd φ N
27 elfz I 1 N I 1 N 1 I I N
28 23 25 26 27 syl3anc φ I 1 N 1 I I N
29 20 28 mpbird φ I 1 N
30 nn0p1nn L 0 L + 1
31 7 30 ax-mp L + 1
32 11 31 eqeltrri J
33 nnge1 J 1 J
34 32 33 ax-mp 1 J
35 34 9 pm3.2i 1 J J N
36 35 a1i φ 1 J J N
37 nnz J J
38 32 37 ax-mp J
39 38 a1i φ J
40 elfz J 1 N J 1 N 1 J J N
41 39 25 26 40 syl3anc φ J 1 N 1 J J N
42 36 41 mpbird φ J 1 N
43 1 2 3 4 5 29 42 lmatfval φ I M J = W I 1 J 1
44 6 nn0cni K
45 ax-1cn 1
46 44 45 pncan3oi K + 1 - 1 = K
47 10 oveq1i K + 1 - 1 = I 1
48 46 47 eqtr3i K = I 1
49 48 fveq2i W K = W I 1
50 49 12 eqtr3i W I 1 = X
51 50 a1i φ W I 1 = X
52 51 fveq1d φ W I 1 J 1 = X J 1
53 7 nn0cni L
54 53 45 pncan3oi L + 1 - 1 = L
55 11 oveq1i L + 1 - 1 = J 1
56 54 55 eqtr3i L = J 1
57 56 a1i φ L = J 1
58 57 fveq2d φ X L = X J 1
59 58 13 eqtr3d φ X J 1 = Y
60 43 52 59 3eqtrd φ I M J = Y