Metamath Proof Explorer


Theorem lmatfvlem

Description: Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020)

Ref Expression
Hypotheses lmatfval.m M=litMatW
lmatfval.n φN
lmatfval.w φWWordWordV
lmatfval.1 φW=N
lmatfval.2 φi0..^NWi=N
lmatfvlem.1 K0
lmatfvlem.2 L0
lmatfvlem.3 IN
lmatfvlem.4 JN
lmatfvlem.5 K+1=I
lmatfvlem.6 L+1=J
lmatfvlem.7 WK=X
lmatfvlem.8 φXL=Y
Assertion lmatfvlem φIMJ=Y

Proof

Step Hyp Ref Expression
1 lmatfval.m M=litMatW
2 lmatfval.n φN
3 lmatfval.w φWWordWordV
4 lmatfval.1 φW=N
5 lmatfval.2 φi0..^NWi=N
6 lmatfvlem.1 K0
7 lmatfvlem.2 L0
8 lmatfvlem.3 IN
9 lmatfvlem.4 JN
10 lmatfvlem.5 K+1=I
11 lmatfvlem.6 L+1=J
12 lmatfvlem.7 WK=X
13 lmatfvlem.8 φXL=Y
14 nn0p1nn K0K+1
15 6 14 ax-mp K+1
16 10 15 eqeltrri I
17 nnge1 I1I
18 16 17 ax-mp 1I
19 18 8 pm3.2i 1IIN
20 19 a1i φ1IIN
21 nnz II
22 16 21 ax-mp I
23 22 a1i φI
24 1z 1
25 24 a1i φ1
26 2 nnzd φN
27 elfz I1NI1N1IIN
28 23 25 26 27 syl3anc φI1N1IIN
29 20 28 mpbird φI1N
30 nn0p1nn L0L+1
31 7 30 ax-mp L+1
32 11 31 eqeltrri J
33 nnge1 J1J
34 32 33 ax-mp 1J
35 34 9 pm3.2i 1JJN
36 35 a1i φ1JJN
37 nnz JJ
38 32 37 ax-mp J
39 38 a1i φJ
40 elfz J1NJ1N1JJN
41 39 25 26 40 syl3anc φJ1N1JJN
42 36 41 mpbird φJ1N
43 1 2 3 4 5 29 42 lmatfval φIMJ=WI1J1
44 6 nn0cni K
45 ax-1cn 1
46 44 45 pncan3oi K+1-1=K
47 10 oveq1i K+1-1=I1
48 46 47 eqtr3i K=I1
49 48 fveq2i WK=WI1
50 49 12 eqtr3i WI1=X
51 50 a1i φWI1=X
52 51 fveq1d φWI1J1=XJ1
53 7 nn0cni L
54 53 45 pncan3oi L+1-1=L
55 11 oveq1i L+1-1=J1
56 54 55 eqtr3i L=J1
57 56 a1i φL=J1
58 57 fveq2d φXL=XJ1
59 58 13 eqtr3d φXJ1=Y
60 43 52 59 3eqtrd φIMJ=Y