Description: If F converges, there is some upper integer set on which F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lmff.1 | |
|
lmff.3 | |
||
lmff.4 | |
||
lmff.5 | |
||
Assertion | lmff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmff.1 | |
|
2 | lmff.3 | |
|
3 | lmff.4 | |
|
4 | lmff.5 | |
|
5 | eldm2g | |
|
6 | 5 | ibi | |
7 | 4 6 | syl | |
8 | df-br | |
|
9 | 8 | exbii | |
10 | 7 9 | sylibr | |
11 | lmcl | |
|
12 | 2 11 | sylan | |
13 | eleq2 | |
|
14 | feq3 | |
|
15 | 14 | rexbidv | |
16 | 13 15 | imbi12d | |
17 | 2 | lmbr | |
18 | 17 | biimpa | |
19 | 18 | simp3d | |
20 | toponmax | |
|
21 | 2 20 | syl | |
22 | 21 | adantr | |
23 | 16 19 22 | rspcdva | |
24 | 12 23 | mpd | |
25 | 10 24 | exlimddv | |
26 | uzf | |
|
27 | ffn | |
|
28 | reseq2 | |
|
29 | id | |
|
30 | 28 29 | feq12d | |
31 | 30 | rexrn | |
32 | 26 27 31 | mp2b | |
33 | 25 32 | sylib | |
34 | 1 | rexuz3 | |
35 | 3 34 | syl | |
36 | 18 | simp1d | |
37 | 10 36 | exlimddv | |
38 | pmfun | |
|
39 | 37 38 | syl | |
40 | ffvresb | |
|
41 | 39 40 | syl | |
42 | 41 | rexbidv | |
43 | 41 | rexbidv | |
44 | 35 42 43 | 3bitr4d | |
45 | 33 44 | mpbird | |