Metamath Proof Explorer


Theorem lmff

Description: If F converges, there is some upper integer set on which F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Hypotheses lmff.1 Z=M
lmff.3 φJTopOnX
lmff.4 φM
lmff.5 φFdomtJ
Assertion lmff φjZFj:jX

Proof

Step Hyp Ref Expression
1 lmff.1 Z=M
2 lmff.3 φJTopOnX
3 lmff.4 φM
4 lmff.5 φFdomtJ
5 eldm2g FdomtJFdomtJyFytJ
6 5 ibi FdomtJyFytJ
7 4 6 syl φyFytJ
8 df-br FtJyFytJ
9 8 exbii yFtJyyFytJ
10 7 9 sylibr φyFtJy
11 lmcl JTopOnXFtJyyX
12 2 11 sylan φFtJyyX
13 eleq2 j=XyjyX
14 feq3 j=XFx:xjFx:xX
15 14 rexbidv j=XxranFx:xjxranFx:xX
16 13 15 imbi12d j=XyjxranFx:xjyXxranFx:xX
17 2 lmbr φFtJyFX𝑝𝑚yXjJyjxranFx:xj
18 17 biimpa φFtJyFX𝑝𝑚yXjJyjxranFx:xj
19 18 simp3d φFtJyjJyjxranFx:xj
20 toponmax JTopOnXXJ
21 2 20 syl φXJ
22 21 adantr φFtJyXJ
23 16 19 22 rspcdva φFtJyyXxranFx:xX
24 12 23 mpd φFtJyxranFx:xX
25 10 24 exlimddv φxranFx:xX
26 uzf :𝒫
27 ffn :𝒫Fn
28 reseq2 x=jFx=Fj
29 id x=jx=j
30 28 29 feq12d x=jFx:xXFj:jX
31 30 rexrn FnxranFx:xXjFj:jX
32 26 27 31 mp2b xranFx:xXjFj:jX
33 25 32 sylib φjFj:jX
34 1 rexuz3 MjZxjxdomFFxXjxjxdomFFxX
35 3 34 syl φjZxjxdomFFxXjxjxdomFFxX
36 18 simp1d φFtJyFX𝑝𝑚
37 10 36 exlimddv φFX𝑝𝑚
38 pmfun FX𝑝𝑚FunF
39 37 38 syl φFunF
40 ffvresb FunFFj:jXxjxdomFFxX
41 39 40 syl φFj:jXxjxdomFFxX
42 41 rexbidv φjZFj:jXjZxjxdomFFxX
43 41 rexbidv φjFj:jXjxjxdomFFxX
44 35 42 43 3bitr4d φjZFj:jXjFj:jX
45 33 44 mpbird φjZFj:jX