Description: Lemma 4 for lmod1 . (Contributed by AV, 29-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lmod1.m | |
|
Assertion | lmod1lem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmod1.m | |
|
2 | fvex | |
|
3 | snex | |
|
4 | 2 3 | pm3.2i | |
5 | 4 | a1i | |
6 | mpoexga | |
|
7 | 1 | lmodvsca | |
8 | 5 6 7 | 3syl | |
9 | 8 | eqcomd | |
10 | simprr | |
|
11 | simprl | |
|
12 | snidg | |
|
13 | 12 | ad2antrr | |
14 | 9 10 11 13 13 | ovmpod | |
15 | simprr | |
|
16 | simprr | |
|
17 | 9 15 16 13 13 | ovmpod | |
18 | 17 | oveq2d | |
19 | simprr | |
|
20 | simplr | |
|
21 | 1 | lmodsca | |
22 | 21 | fveq2d | |
23 | 20 22 | syl | |
24 | 23 | eqcomd | |
25 | 24 | oveqd | |
26 | eqid | |
|
27 | eqid | |
|
28 | 26 27 | ringcl | |
29 | 20 11 16 28 | syl3anc | |
30 | 25 29 | eqeltrd | |
31 | 9 19 30 13 13 | ovmpod | |
32 | 14 18 31 | 3eqtr4rd | |