Metamath Proof Explorer


Theorem lmod1lem4

Description: Lemma 4 for lmod1 . (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m M=BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
Assertion lmod1lem4 IVRRingqBaseRrBaseRqScalarMrMI=qMrMI

Proof

Step Hyp Ref Expression
1 lmod1.m M=BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
2 fvex BaseRV
3 snex IV
4 2 3 pm3.2i BaseRVIV
5 4 a1i IVRRingqBaseRrBaseRBaseRVIV
6 mpoexga BaseRVIVxBaseR,yIyV
7 1 lmodvsca xBaseR,yIyVxBaseR,yIy=M
8 5 6 7 3syl IVRRingqBaseRrBaseRxBaseR,yIy=M
9 8 eqcomd IVRRingqBaseRrBaseRM=xBaseR,yIy
10 simprr IVRRingqBaseRrBaseRx=qy=Iy=I
11 simprl IVRRingqBaseRrBaseRqBaseR
12 snidg IVII
13 12 ad2antrr IVRRingqBaseRrBaseRII
14 9 10 11 13 13 ovmpod IVRRingqBaseRrBaseRqMI=I
15 simprr IVRRingqBaseRrBaseRx=ry=Iy=I
16 simprr IVRRingqBaseRrBaseRrBaseR
17 9 15 16 13 13 ovmpod IVRRingqBaseRrBaseRrMI=I
18 17 oveq2d IVRRingqBaseRrBaseRqMrMI=qMI
19 simprr IVRRingqBaseRrBaseRx=qScalarMry=Iy=I
20 simplr IVRRingqBaseRrBaseRRRing
21 1 lmodsca RRingR=ScalarM
22 21 fveq2d RRingR=ScalarM
23 20 22 syl IVRRingqBaseRrBaseRR=ScalarM
24 23 eqcomd IVRRingqBaseRrBaseRScalarM=R
25 24 oveqd IVRRingqBaseRrBaseRqScalarMr=qRr
26 eqid BaseR=BaseR
27 eqid R=R
28 26 27 ringcl RRingqBaseRrBaseRqRrBaseR
29 20 11 16 28 syl3anc IVRRingqBaseRrBaseRqRrBaseR
30 25 29 eqeltrd IVRRingqBaseRrBaseRqScalarMrBaseR
31 9 19 30 13 13 ovmpod IVRRingqBaseRrBaseRqScalarMrMI=I
32 14 18 31 3eqtr4rd IVRRingqBaseRrBaseRqScalarMrMI=qMrMI