Metamath Proof Explorer


Theorem lncmp

Description: If two lines are comparable, they are equal. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses lncmp.b B=BaseK
lncmp.l ˙=K
lncmp.n N=LinesK
lncmp.m M=pmapK
Assertion lncmp KHLXBYBMXNMYNX˙YX=Y

Proof

Step Hyp Ref Expression
1 lncmp.b B=BaseK
2 lncmp.l ˙=K
3 lncmp.n N=LinesK
4 lncmp.m M=pmapK
5 simplrl KHLXBYBMXNMYNX˙YMXN
6 simpll1 KHLXBYBMXNMYNX˙YKHL
7 simpll2 KHLXBYBMXNMYNX˙YXB
8 eqid joinK=joinK
9 eqid AtomsK=AtomsK
10 1 8 9 3 4 isline3 KHLXBMXNpAtomsKqAtomsKpqX=pjoinKq
11 6 7 10 syl2anc KHLXBYBMXNMYNX˙YMXNpAtomsKqAtomsKpqX=pjoinKq
12 5 11 mpbid KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKq
13 simp3rr KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqX=pjoinKq
14 simp1l1 KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqKHL
15 simp1l3 KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqYB
16 simp1rr KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqMYN
17 simp3ll KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqpAtomsK
18 simp3lr KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqqAtomsK
19 simp3rl KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqpq
20 14 hllatd KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqKLat
21 1 9 atbase pAtomsKpB
22 17 21 syl KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqpB
23 simp1l2 KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqXB
24 2 8 9 hlatlej1 KHLpAtomsKqAtomsKp˙pjoinKq
25 14 17 18 24 syl3anc KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqp˙pjoinKq
26 25 13 breqtrrd KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqp˙X
27 simp2 KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqX˙Y
28 1 2 20 22 23 15 26 27 lattrd KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqp˙Y
29 1 9 atbase qAtomsKqB
30 18 29 syl KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqqB
31 2 8 9 hlatlej2 KHLpAtomsKqAtomsKq˙pjoinKq
32 14 17 18 31 syl3anc KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqq˙pjoinKq
33 32 13 breqtrrd KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqq˙X
34 1 2 20 30 23 15 33 27 lattrd KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqq˙Y
35 1 2 8 9 3 4 lneq2at KHLYBMYNpAtomsKqAtomsKpqp˙Yq˙YY=pjoinKq
36 14 15 16 17 18 19 28 34 35 syl332anc KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqY=pjoinKq
37 13 36 eqtr4d KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqX=Y
38 37 3expia KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqX=Y
39 38 expd KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqX=Y
40 39 rexlimdvv KHLXBYBMXNMYNX˙YpAtomsKqAtomsKpqX=pjoinKqX=Y
41 12 40 mpd KHLXBYBMXNMYNX˙YX=Y
42 41 ex KHLXBYBMXNMYNX˙YX=Y
43 simpl1 KHLXBYBMXNMYNKHL
44 43 hllatd KHLXBYBMXNMYNKLat
45 simpl2 KHLXBYBMXNMYNXB
46 1 2 latref KLatXBX˙X
47 44 45 46 syl2anc KHLXBYBMXNMYNX˙X
48 breq2 X=YX˙XX˙Y
49 47 48 syl5ibcom KHLXBYBMXNMYNX=YX˙Y
50 42 49 impbid KHLXBYBMXNMYNX˙YX=Y