Metamath Proof Explorer


Theorem lnopunilem1

Description: Lemma for lnopunii . (Contributed by NM, 14-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses lnopunilem.1 TLinOp
lnopunilem.2 xnormTx=normx
lnopunilem.3 A
lnopunilem.4 B
lnopunilem1.5 C
Assertion lnopunilem1 CTAihTB=CAihB

Proof

Step Hyp Ref Expression
1 lnopunilem.1 TLinOp
2 lnopunilem.2 xnormTx=normx
3 lnopunilem.3 A
4 lnopunilem.4 B
5 lnopunilem1.5 C
6 1 lnopfi T:
7 6 ffvelcdmi ATA
8 3 7 ax-mp TA
9 6 ffvelcdmi BTB
10 4 9 ax-mp TB
11 8 10 hicli TAihTB
12 5 11 mulcli CTAihTB
13 reval CTAihTBCTAihTB=CTAihTB+CTAihTB2
14 12 13 ax-mp CTAihTB=CTAihTB+CTAihTB2
15 3 4 hicli AihB
16 5 15 mulcli CAihB
17 reval CAihBCAihB=CAihB+CAihB2
18 16 17 ax-mp CAihB=CAihB+CAihB2
19 2fveq3 x=ynormTx=normTy
20 fveq2 x=ynormx=normy
21 19 20 eqeq12d x=ynormTx=normxnormTy=normy
22 21 cbvralvw xnormTx=normxynormTy=normy
23 2 22 mpbi ynormTy=normy
24 oveq1 normTy=normynormTy2=normy2
25 6 ffvelcdmi yTy
26 normsq TynormTy2=TyihTy
27 25 26 syl ynormTy2=TyihTy
28 normsq ynormy2=yihy
29 27 28 eqeq12d ynormTy2=normy2TyihTy=yihy
30 24 29 imbitrid ynormTy=normyTyihTy=yihy
31 30 ralimia ynormTy=normyyTyihTy=yihy
32 23 31 ax-mp yTyihTy=yihy
33 fveq2 y=ATy=TA
34 33 33 oveq12d y=ATyihTy=TAihTA
35 id y=Ay=A
36 35 35 oveq12d y=Ayihy=AihA
37 34 36 eqeq12d y=ATyihTy=yihyTAihTA=AihA
38 37 rspcv AyTyihTy=yihyTAihTA=AihA
39 3 32 38 mp2 TAihTA=AihA
40 39 oveq2i CTAihTA=CAihA
41 40 oveq2i CCTAihTA=CCAihA
42 fveq2 y=BTy=TB
43 42 42 oveq12d y=BTyihTy=TBihTB
44 id y=By=B
45 44 44 oveq12d y=Byihy=BihB
46 43 45 eqeq12d y=BTyihTy=yihyTBihTB=BihB
47 46 rspcv ByTyihTy=yihyTBihTB=BihB
48 4 32 47 mp2 TBihTB=BihB
49 41 48 oveq12i CCTAihTA+TBihTB=CCAihA+BihB
50 49 oveq1i CCTAihTA+TBihTB+CTAihTB+CTAihTB=CCAihA+BihB+CTAihTB+CTAihTB
51 5 cjcli C
52 8 8 hicli TAihTA
53 51 52 mulcli CTAihTA
54 5 53 mulcli CCTAihTA
55 10 10 hicli TBihTB
56 12 cjcli CTAihTB
57 54 55 12 56 add42i CCTAihTA+TBihTB+CTAihTB+CTAihTB=CCTAihTA+CTAihTB+CTAihTB+TBihTB
58 3 3 hicli AihA
59 51 58 mulcli CAihA
60 5 59 mulcli CCAihA
61 4 4 hicli BihB
62 16 cjcli CAihB
63 60 61 16 62 add42i CCAihA+BihB+CAihB+CAihB=CCAihA+CAihB+CAihB+BihB
64 5 3 hvmulcli CA
65 64 4 hvaddcli CA+B
66 fveq2 y=CA+BTy=TCA+B
67 66 66 oveq12d y=CA+BTyihTy=TCA+BihTCA+B
68 id y=CA+By=CA+B
69 68 68 oveq12d y=CA+Byihy=CA+BihCA+B
70 67 69 eqeq12d y=CA+BTyihTy=yihyTCA+BihTCA+B=CA+BihCA+B
71 70 rspcv CA+ByTyihTy=yihyTCA+BihTCA+B=CA+BihCA+B
72 65 32 71 mp2 TCA+BihTCA+B=CA+BihCA+B
73 ax-his2 CABCA+BCA+BihCA+B=CAihCA+B+BihCA+B
74 64 4 65 73 mp3an CA+BihCA+B=CAihCA+B+BihCA+B
75 ax-his3 CACA+BCAihCA+B=CAihCA+B
76 5 3 65 75 mp3an CAihCA+B=CAihCA+B
77 his7 ACABAihCA+B=AihCA+AihB
78 3 64 4 77 mp3an AihCA+B=AihCA+AihB
79 his5 CAAAihCA=CAihA
80 5 3 3 79 mp3an AihCA=CAihA
81 80 oveq1i AihCA+AihB=CAihA+AihB
82 78 81 eqtri AihCA+B=CAihA+AihB
83 82 oveq2i CAihCA+B=CCAihA+AihB
84 5 59 15 adddii CCAihA+AihB=CCAihA+CAihB
85 76 83 84 3eqtri CAihCA+B=CCAihA+CAihB
86 his7 BCABBihCA+B=BihCA+BihB
87 4 64 4 86 mp3an BihCA+B=BihCA+BihB
88 his5 CBABihCA=CBihA
89 5 4 3 88 mp3an BihCA=CBihA
90 5 15 cjmuli CAihB=CAihB
91 4 3 his1i BihA=AihB
92 91 oveq2i CBihA=CAihB
93 90 92 eqtr4i CAihB=CBihA
94 89 93 eqtr4i BihCA=CAihB
95 94 oveq1i BihCA+BihB=CAihB+BihB
96 87 95 eqtri BihCA+B=CAihB+BihB
97 85 96 oveq12i CAihCA+B+BihCA+B=CCAihA+CAihB+CAihB+BihB
98 72 74 97 3eqtrri CCAihA+CAihB+CAihB+BihB=TCA+BihTCA+B
99 1 lnopli CABTCA+B=CTA+TB
100 5 3 4 99 mp3an TCA+B=CTA+TB
101 100 100 oveq12i TCA+BihTCA+B=CTA+TBihCTA+TB
102 5 8 hvmulcli CTA
103 102 10 hvaddcli CTA+TB
104 ax-his2 CTATBCTA+TBCTA+TBihCTA+TB=CTAihCTA+TB+TBihCTA+TB
105 102 10 103 104 mp3an CTA+TBihCTA+TB=CTAihCTA+TB+TBihCTA+TB
106 101 105 eqtri TCA+BihTCA+B=CTAihCTA+TB+TBihCTA+TB
107 ax-his3 CTACTA+TBCTAihCTA+TB=CTAihCTA+TB
108 5 8 103 107 mp3an CTAihCTA+TB=CTAihCTA+TB
109 his7 TACTATBTAihCTA+TB=TAihCTA+TAihTB
110 8 102 10 109 mp3an TAihCTA+TB=TAihCTA+TAihTB
111 his5 CTATATAihCTA=CTAihTA
112 5 8 8 111 mp3an TAihCTA=CTAihTA
113 112 oveq1i TAihCTA+TAihTB=CTAihTA+TAihTB
114 110 113 eqtri TAihCTA+TB=CTAihTA+TAihTB
115 114 oveq2i CTAihCTA+TB=CCTAihTA+TAihTB
116 5 53 11 adddii CCTAihTA+TAihTB=CCTAihTA+CTAihTB
117 108 115 116 3eqtri CTAihCTA+TB=CCTAihTA+CTAihTB
118 his7 TBCTATBTBihCTA+TB=TBihCTA+TBihTB
119 10 102 10 118 mp3an TBihCTA+TB=TBihCTA+TBihTB
120 his5 CTBTATBihCTA=CTBihTA
121 5 10 8 120 mp3an TBihCTA=CTBihTA
122 5 11 cjmuli CTAihTB=CTAihTB
123 10 8 his1i TBihTA=TAihTB
124 123 oveq2i CTBihTA=CTAihTB
125 122 124 eqtr4i CTAihTB=CTBihTA
126 121 125 eqtr4i TBihCTA=CTAihTB
127 126 oveq1i TBihCTA+TBihTB=CTAihTB+TBihTB
128 119 127 eqtri TBihCTA+TB=CTAihTB+TBihTB
129 117 128 oveq12i CTAihCTA+TB+TBihCTA+TB=CCTAihTA+CTAihTB+CTAihTB+TBihTB
130 98 106 129 3eqtrri CCTAihTA+CTAihTB+CTAihTB+TBihTB=CCAihA+CAihB+CAihB+BihB
131 63 130 eqtr4i CCAihA+BihB+CAihB+CAihB=CCTAihTA+CTAihTB+CTAihTB+TBihTB
132 57 131 eqtr4i CCTAihTA+TBihTB+CTAihTB+CTAihTB=CCAihA+BihB+CAihB+CAihB
133 50 132 eqtr3i CCAihA+BihB+CTAihTB+CTAihTB=CCAihA+BihB+CAihB+CAihB
134 60 61 addcli CCAihA+BihB
135 12 56 addcli CTAihTB+CTAihTB
136 16 62 addcli CAihB+CAihB
137 134 135 136 addcani CCAihA+BihB+CTAihTB+CTAihTB=CCAihA+BihB+CAihB+CAihBCTAihTB+CTAihTB=CAihB+CAihB
138 133 137 mpbi CTAihTB+CTAihTB=CAihB+CAihB
139 138 oveq1i CTAihTB+CTAihTB2=CAihB+CAihB2
140 18 139 eqtr4i CAihB=CTAihTB+CTAihTB2
141 14 140 eqtr4i CTAihTB=CAihB