Metamath Proof Explorer


Theorem lnr2i

Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015)

Ref Expression
Hypotheses lnr2i.u U=LIdealR
lnr2i.n N=RSpanR
Assertion lnr2i RLNoeRIUg𝒫IFinI=Ng

Proof

Step Hyp Ref Expression
1 lnr2i.u U=LIdealR
2 lnr2i.n N=RSpanR
3 eqid BaseR=BaseR
4 3 1 2 islnr2 RLNoeRRRingiUg𝒫BaseRFini=Ng
5 4 simprbi RLNoeRiUg𝒫BaseRFini=Ng
6 eqeq1 i=Ii=NgI=Ng
7 6 rexbidv i=Ig𝒫BaseRFini=Ngg𝒫BaseRFinI=Ng
8 7 rspcva IUiUg𝒫BaseRFini=Ngg𝒫BaseRFinI=Ng
9 5 8 sylan2 IURLNoeRg𝒫BaseRFinI=Ng
10 9 ancoms RLNoeRIUg𝒫BaseRFinI=Ng
11 lnrring RLNoeRRRing
12 2 3 rspssid RRinggBaseRgNg
13 11 12 sylan RLNoeRgBaseRgNg
14 13 ex RLNoeRgBaseRgNg
15 vex gV
16 15 elpw g𝒫BaseRgBaseR
17 15 elpw g𝒫NggNg
18 14 16 17 3imtr4g RLNoeRg𝒫BaseRg𝒫Ng
19 18 anim1d RLNoeRg𝒫BaseRgFing𝒫NggFin
20 elin g𝒫BaseRFing𝒫BaseRgFin
21 elin g𝒫NgFing𝒫NggFin
22 19 20 21 3imtr4g RLNoeRg𝒫BaseRFing𝒫NgFin
23 pweq I=Ng𝒫I=𝒫Ng
24 23 ineq1d I=Ng𝒫IFin=𝒫NgFin
25 24 eleq2d I=Ngg𝒫IFing𝒫NgFin
26 25 imbi2d I=Ngg𝒫BaseRFing𝒫IFing𝒫BaseRFing𝒫NgFin
27 22 26 syl5ibrcom RLNoeRI=Ngg𝒫BaseRFing𝒫IFin
28 27 imdistand RLNoeRI=Ngg𝒫BaseRFinI=Ngg𝒫IFin
29 ancom g𝒫BaseRFinI=NgI=Ngg𝒫BaseRFin
30 ancom g𝒫IFinI=NgI=Ngg𝒫IFin
31 28 29 30 3imtr4g RLNoeRg𝒫BaseRFinI=Ngg𝒫IFinI=Ng
32 31 reximdv2 RLNoeRg𝒫BaseRFinI=Ngg𝒫IFinI=Ng
33 32 adantr RLNoeRIUg𝒫BaseRFinI=Ngg𝒫IFinI=Ng
34 10 33 mpd RLNoeRIUg𝒫IFinI=Ng