Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lnr2i.u | |
|
lnr2i.n | |
||
Assertion | lnr2i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnr2i.u | |
|
2 | lnr2i.n | |
|
3 | eqid | |
|
4 | 3 1 2 | islnr2 | |
5 | 4 | simprbi | |
6 | eqeq1 | |
|
7 | 6 | rexbidv | |
8 | 7 | rspcva | |
9 | 5 8 | sylan2 | |
10 | 9 | ancoms | |
11 | lnrring | |
|
12 | 2 3 | rspssid | |
13 | 11 12 | sylan | |
14 | 13 | ex | |
15 | vex | |
|
16 | 15 | elpw | |
17 | 15 | elpw | |
18 | 14 16 17 | 3imtr4g | |
19 | 18 | anim1d | |
20 | elin | |
|
21 | elin | |
|
22 | 19 20 21 | 3imtr4g | |
23 | pweq | |
|
24 | 23 | ineq1d | |
25 | 24 | eleq2d | |
26 | 25 | imbi2d | |
27 | 22 26 | syl5ibrcom | |
28 | 27 | imdistand | |
29 | ancom | |
|
30 | ancom | |
|
31 | 28 29 30 | 3imtr4g | |
32 | 31 | reximdv2 | |
33 | 32 | adantr | |
34 | 10 33 | mpd | |