Metamath Proof Explorer


Theorem lpirlnr

Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion lpirlnr R LPIR R LNoeR

Proof

Step Hyp Ref Expression
1 lpirring R LPIR R Ring
2 eqid LPIdeal R = LPIdeal R
3 eqid RSpan R = RSpan R
4 eqid Base R = Base R
5 2 3 4 islpidl R Ring a LPIdeal R c Base R a = RSpan R c
6 1 5 syl R LPIR a LPIdeal R c Base R a = RSpan R c
7 6 biimpa R LPIR a LPIdeal R c Base R a = RSpan R c
8 snelpwi c Base R c 𝒫 Base R
9 8 adantl R LPIR a LPIdeal R c Base R c 𝒫 Base R
10 snfi c Fin
11 10 a1i R LPIR a LPIdeal R c Base R c Fin
12 9 11 elind R LPIR a LPIdeal R c Base R c 𝒫 Base R Fin
13 eqid RSpan R c = RSpan R c
14 fveq2 b = c RSpan R b = RSpan R c
15 14 rspceeqv c 𝒫 Base R Fin RSpan R c = RSpan R c b 𝒫 Base R Fin RSpan R c = RSpan R b
16 12 13 15 sylancl R LPIR a LPIdeal R c Base R b 𝒫 Base R Fin RSpan R c = RSpan R b
17 eqeq1 a = RSpan R c a = RSpan R b RSpan R c = RSpan R b
18 17 rexbidv a = RSpan R c b 𝒫 Base R Fin a = RSpan R b b 𝒫 Base R Fin RSpan R c = RSpan R b
19 16 18 syl5ibrcom R LPIR a LPIdeal R c Base R a = RSpan R c b 𝒫 Base R Fin a = RSpan R b
20 19 rexlimdva R LPIR a LPIdeal R c Base R a = RSpan R c b 𝒫 Base R Fin a = RSpan R b
21 7 20 mpd R LPIR a LPIdeal R b 𝒫 Base R Fin a = RSpan R b
22 21 ralrimiva R LPIR a LPIdeal R b 𝒫 Base R Fin a = RSpan R b
23 eqid LIdeal R = LIdeal R
24 2 23 islpir R LPIR R Ring LIdeal R = LPIdeal R
25 24 simprbi R LPIR LIdeal R = LPIdeal R
26 25 raleqdv R LPIR a LIdeal R b 𝒫 Base R Fin a = RSpan R b a LPIdeal R b 𝒫 Base R Fin a = RSpan R b
27 22 26 mpbird R LPIR a LIdeal R b 𝒫 Base R Fin a = RSpan R b
28 4 23 3 islnr2 R LNoeR R Ring a LIdeal R b 𝒫 Base R Fin a = RSpan R b
29 1 27 28 sylanbrc R LPIR R LNoeR