Metamath Proof Explorer


Theorem lo1add

Description: The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1add2.1 φxABV
o1add2.2 φxACV
lo1add.3 φxAB𝑂1
lo1add.4 φxAC𝑂1
Assertion lo1add φxAB+C𝑂1

Proof

Step Hyp Ref Expression
1 o1add2.1 φxABV
2 o1add2.2 φxACV
3 lo1add.3 φxAB𝑂1
4 lo1add.4 φxAC𝑂1
5 reeanv mncxAcxBmcxAcxCnmcxAcxBmncxAcxCn
6 1 ralrimiva φxABV
7 dmmptg xABVdomxAB=A
8 6 7 syl φdomxAB=A
9 lo1dm xAB𝑂1domxAB
10 3 9 syl φdomxAB
11 8 10 eqsstrrd φA
12 11 adantr φmnA
13 rexanre AcxAcxBmCncxAcxBmcxAcxCn
14 12 13 syl φmncxAcxBmCncxAcxBmcxAcxCn
15 readdcl mnm+n
16 15 adantl φmnm+n
17 1 3 lo1mptrcl φxAB
18 17 adantlr φmnxAB
19 2 4 lo1mptrcl φxAC
20 19 adantlr φmnxAC
21 simplrl φmnxAm
22 simplrr φmnxAn
23 le2add BCmnBmCnB+Cm+n
24 18 20 21 22 23 syl22anc φmnxABmCnB+Cm+n
25 24 imim2d φmnxAcxBmCncxB+Cm+n
26 25 ralimdva φmnxAcxBmCnxAcxB+Cm+n
27 breq2 p=m+nB+CpB+Cm+n
28 27 imbi2d p=m+ncxB+CpcxB+Cm+n
29 28 ralbidv p=m+nxAcxB+CpxAcxB+Cm+n
30 29 rspcev m+nxAcxB+Cm+npxAcxB+Cp
31 16 26 30 syl6an φmnxAcxBmCnpxAcxB+Cp
32 31 reximdv φmncxAcxBmCncpxAcxB+Cp
33 14 32 sylbird φmncxAcxBmcxAcxCncpxAcxB+Cp
34 33 rexlimdvva φmncxAcxBmcxAcxCncpxAcxB+Cp
35 5 34 biimtrrid φmcxAcxBmncxAcxCncpxAcxB+Cp
36 11 17 ello1mpt φxAB𝑂1cmxAcxBm
37 rexcom cmxAcxBmmcxAcxBm
38 36 37 bitrdi φxAB𝑂1mcxAcxBm
39 11 19 ello1mpt φxAC𝑂1cnxAcxCn
40 rexcom cnxAcxCnncxAcxCn
41 39 40 bitrdi φxAC𝑂1ncxAcxCn
42 38 41 anbi12d φxAB𝑂1xAC𝑂1mcxAcxBmncxAcxCn
43 17 19 readdcld φxAB+C
44 11 43 ello1mpt φxAB+C𝑂1cpxAcxB+Cp
45 35 42 44 3imtr4d φxAB𝑂1xAC𝑂1xAB+C𝑂1
46 3 4 45 mp2and φxAB+C𝑂1