Description: The sum of two eventually upper bounded functions is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | o1add2.1 | |
|
o1add2.2 | |
||
lo1add.3 | |
||
lo1add.4 | |
||
Assertion | lo1add | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o1add2.1 | |
|
2 | o1add2.2 | |
|
3 | lo1add.3 | |
|
4 | lo1add.4 | |
|
5 | reeanv | |
|
6 | 1 | ralrimiva | |
7 | dmmptg | |
|
8 | 6 7 | syl | |
9 | lo1dm | |
|
10 | 3 9 | syl | |
11 | 8 10 | eqsstrrd | |
12 | 11 | adantr | |
13 | rexanre | |
|
14 | 12 13 | syl | |
15 | readdcl | |
|
16 | 15 | adantl | |
17 | 1 3 | lo1mptrcl | |
18 | 17 | adantlr | |
19 | 2 4 | lo1mptrcl | |
20 | 19 | adantlr | |
21 | simplrl | |
|
22 | simplrr | |
|
23 | le2add | |
|
24 | 18 20 21 22 23 | syl22anc | |
25 | 24 | imim2d | |
26 | 25 | ralimdva | |
27 | breq2 | |
|
28 | 27 | imbi2d | |
29 | 28 | ralbidv | |
30 | 29 | rspcev | |
31 | 16 26 30 | syl6an | |
32 | 31 | reximdv | |
33 | 14 32 | sylbird | |
34 | 33 | rexlimdvva | |
35 | 5 34 | biimtrrid | |
36 | 11 17 | ello1mpt | |
37 | rexcom | |
|
38 | 36 37 | bitrdi | |
39 | 11 19 | ello1mpt | |
40 | rexcom | |
|
41 | 39 40 | bitrdi | |
42 | 38 41 | anbi12d | |
43 | 17 19 | readdcld | |
44 | 11 43 | ello1mpt | |
45 | 35 42 44 | 3imtr4d | |
46 | 3 4 45 | mp2and | |