Metamath Proof Explorer


Theorem lo1o1

Description: A function is eventually bounded iff its absolute value is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Assertion lo1o1 F:AF𝑂1absF𝑂1

Proof

Step Hyp Ref Expression
1 o1dm F𝑂1domF
2 fdm F:AdomF=A
3 2 sseq1d F:AdomFA
4 1 3 imbitrid F:AF𝑂1A
5 lo1dm absF𝑂1domabsF
6 absf abs:
7 fco abs:F:AabsF:A
8 6 7 mpan F:AabsF:A
9 8 fdmd F:AdomabsF=A
10 9 sseq1d F:AdomabsFA
11 5 10 imbitrid F:AabsF𝑂1A
12 fvco3 F:AyAabsFy=Fy
13 12 adantlr F:AAyAabsFy=Fy
14 13 breq1d F:AAyAabsFymFym
15 14 imbi2d F:AAyAxyabsFymxyFym
16 15 ralbidva F:AAyAxyabsFymyAxyFym
17 16 2rexbidv F:AAxmyAxyabsFymxmyAxyFym
18 ello12 absF:AAabsF𝑂1xmyAxyabsFym
19 8 18 sylan F:AAabsF𝑂1xmyAxyabsFym
20 elo12 F:AAF𝑂1xmyAxyFym
21 17 19 20 3bitr4rd F:AAF𝑂1absF𝑂1
22 21 ex F:AAF𝑂1absF𝑂1
23 4 11 22 pm5.21ndd F:AF𝑂1absF𝑂1