Metamath Proof Explorer


Theorem logeftb

Description: Relationship between the natural logarithm function and the exponential function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion logeftb AA0BranloglogA=BeB=A

Proof

Step Hyp Ref Expression
1 eldifsn A0AA0
2 dflog2 log=expranlog-1
3 2 fveq1i logA=expranlog-1A
4 3 eqeq1i logA=Bexpranlog-1A=B
5 fvres BranlogexpranlogB=eB
6 5 eqeq1d BranlogexpranlogB=AeB=A
7 6 adantr BranlogA0expranlogB=AeB=A
8 eff1o2 expranlog:ranlog1-1 onto0
9 f1ocnvfvb expranlog:ranlog1-1 onto0BranlogA0expranlogB=Aexpranlog-1A=B
10 8 9 mp3an1 BranlogA0expranlogB=Aexpranlog-1A=B
11 7 10 bitr3d BranlogA0eB=Aexpranlog-1A=B
12 11 ancoms A0BranlogeB=Aexpranlog-1A=B
13 4 12 bitr4id A0BranloglogA=BeB=A
14 1 13 sylanbr AA0BranloglogA=BeB=A
15 14 3impa AA0BranloglogA=BeB=A