Metamath Proof Explorer


Theorem logi

Description: Calculate the logarithm of _i . (Contributed by Scott Fenton, 13-Apr-2020)

Ref Expression
Assertion logi logi=iπ2

Proof

Step Hyp Ref Expression
1 efhalfpi eiπ2=i
2 ax-icn i
3 ine0 i0
4 halfpire π2
5 4 recni π2
6 2 5 mulcli iπ2
7 pipos 0<π
8 pire π
9 lt0neg2 π0<ππ<0
10 8 9 ax-mp 0<ππ<0
11 7 10 mpbi π<0
12 halfpos2 π0<π0<π2
13 8 12 ax-mp 0<π0<π2
14 7 13 mpbi 0<π2
15 8 renegcli π
16 0re 0
17 15 16 4 lttri π<00<π2π<π2
18 11 14 17 mp2an π<π2
19 reim π2π2=iπ2
20 5 19 ax-mp π2=iπ2
21 rere π2π2=π2
22 4 21 ax-mp π2=π2
23 20 22 eqtr3i iπ2=π2
24 18 23 breqtrri π<iπ2
25 8 a1i π
26 25 25 ltaddposd 0<ππ<π+π
27 7 26 mpbii π<π+π
28 picn π
29 28 times2i π2=π+π
30 27 29 breqtrrdi π<π2
31 2rp 2+
32 31 a1i 2+
33 25 25 32 ltdivmul2d π2<ππ<π2
34 30 33 mpbird π2<π
35 34 mptru π2<π
36 4 8 35 ltleii π2π
37 23 36 eqbrtri iπ2π
38 ellogrn iπ2ranlogiπ2π<iπ2iπ2π
39 6 24 37 38 mpbir3an iπ2ranlog
40 logeftb ii0iπ2ranloglogi=iπ2eiπ2=i
41 2 3 39 40 mp3an logi=iπ2eiπ2=i
42 1 41 mpbir logi=iπ2