Metamath Proof Explorer


Theorem logi

Description: Calculate the logarithm of _i . (Contributed by Scott Fenton, 13-Apr-2020)

Ref Expression
Assertion logi log i = i π 2

Proof

Step Hyp Ref Expression
1 efhalfpi e i π 2 = i
2 ax-icn i
3 ine0 i 0
4 halfpire π 2
5 4 recni π 2
6 2 5 mulcli i π 2
7 pipos 0 < π
8 pire π
9 lt0neg2 π 0 < π π < 0
10 8 9 ax-mp 0 < π π < 0
11 7 10 mpbi π < 0
12 halfpos2 π 0 < π 0 < π 2
13 8 12 ax-mp 0 < π 0 < π 2
14 7 13 mpbi 0 < π 2
15 8 renegcli π
16 0re 0
17 15 16 4 lttri π < 0 0 < π 2 π < π 2
18 11 14 17 mp2an π < π 2
19 reim π 2 π 2 = i π 2
20 5 19 ax-mp π 2 = i π 2
21 rere π 2 π 2 = π 2
22 4 21 ax-mp π 2 = π 2
23 20 22 eqtr3i i π 2 = π 2
24 18 23 breqtrri π < i π 2
25 8 a1i π
26 25 25 ltaddposd 0 < π π < π + π
27 7 26 mpbii π < π + π
28 picn π
29 28 times2i π 2 = π + π
30 27 29 breqtrrdi π < π 2
31 2rp 2 +
32 31 a1i 2 +
33 25 25 32 ltdivmul2d π 2 < π π < π 2
34 30 33 mpbird π 2 < π
35 34 mptru π 2 < π
36 4 8 35 ltleii π 2 π
37 23 36 eqbrtri i π 2 π
38 ellogrn i π 2 ran log i π 2 π < i π 2 i π 2 π
39 6 24 37 38 mpbir3an i π 2 ran log
40 logeftb i i 0 i π 2 ran log log i = i π 2 e i π 2 = i
41 2 3 39 40 mp3an log i = i π 2 e i π 2 = i
42 1 41 mpbir log i = i π 2