Metamath Proof Explorer


Theorem logneg

Description: The natural logarithm of a negative real number. (Contributed by Mario Carneiro, 13-May-2014) (Revised by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion logneg A+logA=logA+iπ

Proof

Step Hyp Ref Expression
1 relogcl A+logA
2 1 recnd A+logA
3 ax-icn i
4 picn π
5 3 4 mulcli iπ
6 efadd logAiπelogA+iπ=elogAeiπ
7 2 5 6 sylancl A+elogA+iπ=elogAeiπ
8 efipi eiπ=1
9 8 oveq2i elogAeiπ=elogA-1
10 reeflog A+elogA=A
11 10 oveq1d A+elogA-1=A-1
12 9 11 eqtrid A+elogAeiπ=A-1
13 rpcn A+A
14 neg1cn 1
15 mulcom A1A-1=-1A
16 13 14 15 sylancl A+A-1=-1A
17 13 mulm1d A+-1A=A
18 16 17 eqtrd A+A-1=A
19 7 12 18 3eqtrd A+elogA+iπ=A
20 19 fveq2d A+logelogA+iπ=logA
21 addcl logAiπlogA+iπ
22 2 5 21 sylancl A+logA+iπ
23 pipos 0<π
24 pire π
25 lt0neg2 π0<ππ<0
26 24 25 ax-mp 0<ππ<0
27 23 26 mpbi π<0
28 24 renegcli π
29 0re 0
30 28 29 24 lttri π<00<ππ<π
31 27 23 30 mp2an π<π
32 crim logAπlogA+iπ=π
33 1 24 32 sylancl A+logA+iπ=π
34 31 33 breqtrrid A+π<logA+iπ
35 24 leidi ππ
36 33 35 eqbrtrdi A+logA+iππ
37 ellogrn logA+iπranloglogA+iππ<logA+iπlogA+iππ
38 22 34 36 37 syl3anbrc A+logA+iπranlog
39 logef logA+iπranloglogelogA+iπ=logA+iπ
40 38 39 syl A+logelogA+iπ=logA+iπ
41 20 40 eqtr3d A+logA=logA+iπ