Metamath Proof Explorer


Theorem logneg

Description: The natural logarithm of a negative real number. (Contributed by Mario Carneiro, 13-May-2014) (Revised by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion logneg A + log A = log A + i π

Proof

Step Hyp Ref Expression
1 relogcl A + log A
2 1 recnd A + log A
3 ax-icn i
4 picn π
5 3 4 mulcli i π
6 efadd log A i π e log A + i π = e log A e i π
7 2 5 6 sylancl A + e log A + i π = e log A e i π
8 efipi e i π = 1
9 8 oveq2i e log A e i π = e log A -1
10 reeflog A + e log A = A
11 10 oveq1d A + e log A -1 = A -1
12 9 11 eqtrid A + e log A e i π = A -1
13 rpcn A + A
14 neg1cn 1
15 mulcom A 1 A -1 = -1 A
16 13 14 15 sylancl A + A -1 = -1 A
17 13 mulm1d A + -1 A = A
18 16 17 eqtrd A + A -1 = A
19 7 12 18 3eqtrd A + e log A + i π = A
20 19 fveq2d A + log e log A + i π = log A
21 addcl log A i π log A + i π
22 2 5 21 sylancl A + log A + i π
23 pipos 0 < π
24 pire π
25 lt0neg2 π 0 < π π < 0
26 24 25 ax-mp 0 < π π < 0
27 23 26 mpbi π < 0
28 24 renegcli π
29 0re 0
30 28 29 24 lttri π < 0 0 < π π < π
31 27 23 30 mp2an π < π
32 crim log A π log A + i π = π
33 1 24 32 sylancl A + log A + i π = π
34 31 33 breqtrrid A + π < log A + i π
35 24 leidi π π
36 33 35 eqbrtrdi A + log A + i π π
37 ellogrn log A + i π ran log log A + i π π < log A + i π log A + i π π
38 22 34 36 37 syl3anbrc A + log A + i π ran log
39 logef log A + i π ran log log e log A + i π = log A + i π
40 38 39 syl A + log e log A + i π = log A + i π
41 20 40 eqtr3d A + log A = log A + i π