Metamath Proof Explorer


Theorem lpival

Description: Value of the set of principal ideals. (Contributed by Stefan O'Rear, 3-Jan-2015)

Ref Expression
Hypotheses lpival.p P=LPIdealR
lpival.k K=RSpanR
lpival.b B=BaseR
Assertion lpival RRingP=gBKg

Proof

Step Hyp Ref Expression
1 lpival.p P=LPIdealR
2 lpival.k K=RSpanR
3 lpival.b B=BaseR
4 fveq2 r=RBaser=BaseR
5 fveq2 r=RRSpanr=RSpanR
6 5 fveq1d r=RRSpanrg=RSpanRg
7 6 sneqd r=RRSpanrg=RSpanRg
8 4 7 iuneq12d r=RgBaserRSpanrg=gBaseRRSpanRg
9 df-lpidl LPIdeal=rRinggBaserRSpanrg
10 fvex RSpanRV
11 10 rnex ranRSpanRV
12 p0ex V
13 11 12 unex ranRSpanRV
14 iunss gBaseRRSpanRgranRSpanRgBaseRRSpanRgranRSpanR
15 fvrn0 RSpanRgranRSpanR
16 snssi RSpanRgranRSpanRRSpanRgranRSpanR
17 15 16 ax-mp RSpanRgranRSpanR
18 17 a1i gBaseRRSpanRgranRSpanR
19 14 18 mprgbir gBaseRRSpanRgranRSpanR
20 13 19 ssexi gBaseRRSpanRgV
21 8 9 20 fvmpt RRingLPIdealR=gBaseRRSpanRg
22 iuneq1 B=BaseRgBKg=gBaseRKg
23 3 22 ax-mp gBKg=gBaseRKg
24 2 fveq1i Kg=RSpanRg
25 24 sneqi Kg=RSpanRg
26 25 a1i gBaseRKg=RSpanRg
27 26 iuneq2i gBaseRKg=gBaseRRSpanRg
28 23 27 eqtri gBKg=gBaseRRSpanRg
29 21 1 28 3eqtr4g RRingP=gBKg