Metamath Proof Explorer


Theorem lply1binom

Description: The binomial theorem for linear polynomials (monic polynomials of degree 1) over commutative rings: ( X + A ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( X ^ k ) ) . (Contributed by AV, 25-Aug-2019)

Ref Expression
Hypotheses cply1binom.p P = Poly 1 R
cply1binom.x X = var 1 R
cply1binom.a + ˙ = + P
cply1binom.m × ˙ = P
cply1binom.t · ˙ = P
cply1binom.g G = mulGrp P
cply1binom.e × ˙ = G
cply1binom.b B = Base P
Assertion lply1binom R CRing N 0 A B N × ˙ X + ˙ A = P k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 cply1binom.p P = Poly 1 R
2 cply1binom.x X = var 1 R
3 cply1binom.a + ˙ = + P
4 cply1binom.m × ˙ = P
5 cply1binom.t · ˙ = P
6 cply1binom.g G = mulGrp P
7 cply1binom.e × ˙ = G
8 cply1binom.b B = Base P
9 crngring R CRing R Ring
10 1 ply1ring R Ring P Ring
11 ringcmn P Ring P CMnd
12 9 10 11 3syl R CRing P CMnd
13 12 3ad2ant1 R CRing N 0 A B P CMnd
14 2 1 8 vr1cl R Ring X B
15 9 14 syl R CRing X B
16 15 3ad2ant1 R CRing N 0 A B X B
17 simp3 R CRing N 0 A B A B
18 8 3 cmncom P CMnd X B A B X + ˙ A = A + ˙ X
19 13 16 17 18 syl3anc R CRing N 0 A B X + ˙ A = A + ˙ X
20 19 oveq2d R CRing N 0 A B N × ˙ X + ˙ A = N × ˙ A + ˙ X
21 1 ply1crng R CRing P CRing
22 21 3ad2ant1 R CRing N 0 A B P CRing
23 simp2 R CRing N 0 A B N 0
24 8 eleq2i A B A Base P
25 24 biimpi A B A Base P
26 25 3ad2ant3 R CRing N 0 A B A Base P
27 15 8 eleqtrdi R CRing X Base P
28 27 3ad2ant1 R CRing N 0 A B X Base P
29 eqid Base P = Base P
30 29 4 5 3 6 7 crngbinom P CRing N 0 A Base P X Base P N × ˙ A + ˙ X = P k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ X
31 22 23 26 28 30 syl22anc R CRing N 0 A B N × ˙ A + ˙ X = P k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ X
32 20 31 eqtrd R CRing N 0 A B N × ˙ X + ˙ A = P k = 0 N ( N k) · ˙ N k × ˙ A × ˙ k × ˙ X