Metamath Proof Explorer


Theorem lsateln0

Description: A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses lsateln0.z 0˙=0W
lsateln0.a A=LSAtomsW
lsateln0.w φWLMod
lsateln0.u φUA
Assertion lsateln0 φvUv0˙

Proof

Step Hyp Ref Expression
1 lsateln0.z 0˙=0W
2 lsateln0.a A=LSAtomsW
3 lsateln0.w φWLMod
4 lsateln0.u φUA
5 eqid BaseW=BaseW
6 eqid LSpanW=LSpanW
7 5 6 1 2 islsat WLModUAvBaseW0˙U=LSpanWv
8 3 7 syl φUAvBaseW0˙U=LSpanWv
9 4 8 mpbid φvBaseW0˙U=LSpanWv
10 eldifi vBaseW0˙vBaseW
11 5 6 lspsnid WLModvBaseWvLSpanWv
12 3 10 11 syl2an φvBaseW0˙vLSpanWv
13 eleq2 U=LSpanWvvUvLSpanWv
14 12 13 syl5ibrcom φvBaseW0˙U=LSpanWvvU
15 14 reximdva φvBaseW0˙U=LSpanWvvBaseW0˙vU
16 9 15 mpd φvBaseW0˙vU
17 eldifsn vBaseW0˙vBaseWv0˙
18 17 anbi1i vBaseW0˙vUvBaseWv0˙vU
19 anass vBaseWv0˙vUvBaseWv0˙vU
20 18 19 bitri vBaseW0˙vUvBaseWv0˙vU
21 20 simprbi vBaseW0˙vUv0˙vU
22 21 ancomd vBaseW0˙vUvUv0˙
23 22 reximi2 vBaseW0˙vUvUv0˙
24 16 23 syl φvUv0˙