Metamath Proof Explorer


Theorem lsatssn0

Description: A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015)

Ref Expression
Hypotheses lsatssn0.o 0˙=0W
lsatssn0.a A=LSAtomsW
lsatssn0.w φWLMod
lsatssn0.q φQA
lsatssn0.u φQU
Assertion lsatssn0 φU0˙

Proof

Step Hyp Ref Expression
1 lsatssn0.o 0˙=0W
2 lsatssn0.a A=LSAtomsW
3 lsatssn0.w φWLMod
4 lsatssn0.q φQA
5 lsatssn0.u φQU
6 eqid LSubSpW=LSubSpW
7 6 2 3 4 lsatlssel φQLSubSpW
8 1 6 lss0ss WLModQLSubSpW0˙Q
9 3 7 8 syl2anc φ0˙Q
10 1 2 3 4 lsatn0 φQ0˙
11 10 necomd φ0˙Q
12 df-pss 0˙Q0˙Q0˙Q
13 9 11 12 sylanbrc φ0˙Q
14 13 5 psssstrd φ0˙U
15 14 pssned φ0˙U
16 15 necomd φU0˙