Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Atoms, hyperplanes, and covering in a left vector space (or module)
lsatssn0
Next ⟩
lsatcmp
Metamath Proof Explorer
Ascii
Unicode
Theorem
lsatssn0
Description:
A subspace (or any class) including an atom is nonzero.
(Contributed by
NM
, 3-Feb-2015)
Ref
Expression
Hypotheses
lsatssn0.o
⊢
0
˙
=
0
W
lsatssn0.a
⊢
A
=
LSAtoms
⁡
W
lsatssn0.w
⊢
φ
→
W
∈
LMod
lsatssn0.q
⊢
φ
→
Q
∈
A
lsatssn0.u
⊢
φ
→
Q
⊆
U
Assertion
lsatssn0
⊢
φ
→
U
≠
0
˙
Proof
Step
Hyp
Ref
Expression
1
lsatssn0.o
⊢
0
˙
=
0
W
2
lsatssn0.a
⊢
A
=
LSAtoms
⁡
W
3
lsatssn0.w
⊢
φ
→
W
∈
LMod
4
lsatssn0.q
⊢
φ
→
Q
∈
A
5
lsatssn0.u
⊢
φ
→
Q
⊆
U
6
eqid
⊢
LSubSp
⁡
W
=
LSubSp
⁡
W
7
6
2
3
4
lsatlssel
⊢
φ
→
Q
∈
LSubSp
⁡
W
8
1
6
lss0ss
⊢
W
∈
LMod
∧
Q
∈
LSubSp
⁡
W
→
0
˙
⊆
Q
9
3
7
8
syl2anc
⊢
φ
→
0
˙
⊆
Q
10
1
2
3
4
lsatn0
⊢
φ
→
Q
≠
0
˙
11
10
necomd
⊢
φ
→
0
˙
≠
Q
12
df-pss
⊢
0
˙
⊂
Q
↔
0
˙
⊆
Q
∧
0
˙
≠
Q
13
9
11
12
sylanbrc
⊢
φ
→
0
˙
⊂
Q
14
13
5
psssstrd
⊢
φ
→
0
˙
⊂
U
15
14
pssned
⊢
φ
→
0
˙
≠
U
16
15
necomd
⊢
φ
→
U
≠
0
˙