Description: A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsatssn0.o | |
|
lsatssn0.a | |
||
lsatssn0.w | |
||
lsatssn0.q | |
||
lsatssn0.u | |
||
Assertion | lsatssn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatssn0.o | |
|
2 | lsatssn0.a | |
|
3 | lsatssn0.w | |
|
4 | lsatssn0.q | |
|
5 | lsatssn0.u | |
|
6 | eqid | |
|
7 | 6 2 3 4 | lsatlssel | |
8 | 1 6 | lss0ss | |
9 | 3 7 8 | syl2anc | |
10 | 1 2 3 4 | lsatn0 | |
11 | 10 | necomd | |
12 | df-pss | |
|
13 | 9 11 12 | sylanbrc | |
14 | 13 5 | psssstrd | |
15 | 14 | pssned | |
16 | 15 | necomd | |