Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpcmp.h | |
|
lshpcmp.w | |
||
lshpcmp.t | |
||
lshpcmp.u | |
||
Assertion | lshpcmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpcmp.h | |
|
2 | lshpcmp.w | |
|
3 | lshpcmp.t | |
|
4 | lshpcmp.u | |
|
5 | eqid | |
|
6 | lveclmod | |
|
7 | 2 6 | syl | |
8 | 5 1 7 4 | lshpne | |
9 | eqid | |
|
10 | 9 1 7 4 | lshplss | |
11 | 5 9 | lssss | |
12 | 10 11 | syl | |
13 | eqid | |
|
14 | eqid | |
|
15 | 5 13 9 14 1 7 | islshpsm | |
16 | 3 15 | mpbid | |
17 | 16 | simp3d | |
18 | id | |
|
19 | 18 | adantrr | |
20 | 2 | adantr | |
21 | 9 1 7 3 | lshplss | |
22 | 21 | adantr | |
23 | 10 | adantr | |
24 | simpr | |
|
25 | 5 9 13 14 20 22 23 24 | lsmcv | |
26 | 19 25 | syl3an1 | |
27 | 26 | 3expia | |
28 | simplrr | |
|
29 | 28 | sseq2d | |
30 | 28 | eqeq2d | |
31 | 27 29 30 | 3imtr3d | |
32 | 31 | exp42 | |
33 | 32 | rexlimdv | |
34 | 17 33 | mpd | |
35 | 12 34 | mpid | |
36 | 35 | necon3ad | |
37 | 8 36 | mpd | |
38 | df-pss | |
|
39 | 38 | simplbi2 | |
40 | 39 | necon1bd | |
41 | 37 40 | syl5com | |
42 | eqimss | |
|
43 | 41 42 | impbid1 | |