Metamath Proof Explorer


Theorem lshpcmp

Description: If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014)

Ref Expression
Hypotheses lshpcmp.h H=LSHypW
lshpcmp.w φWLVec
lshpcmp.t φTH
lshpcmp.u φUH
Assertion lshpcmp φTUT=U

Proof

Step Hyp Ref Expression
1 lshpcmp.h H=LSHypW
2 lshpcmp.w φWLVec
3 lshpcmp.t φTH
4 lshpcmp.u φUH
5 eqid BaseW=BaseW
6 lveclmod WLVecWLMod
7 2 6 syl φWLMod
8 5 1 7 4 lshpne φUBaseW
9 eqid LSubSpW=LSubSpW
10 9 1 7 4 lshplss φULSubSpW
11 5 9 lssss ULSubSpWUBaseW
12 10 11 syl φUBaseW
13 eqid LSpanW=LSpanW
14 eqid LSSumW=LSSumW
15 5 13 9 14 1 7 islshpsm φTHTLSubSpWTBaseWvBaseWTLSSumWLSpanWv=BaseW
16 3 15 mpbid φTLSubSpWTBaseWvBaseWTLSSumWLSpanWv=BaseW
17 16 simp3d φvBaseWTLSSumWLSpanWv=BaseW
18 id φvBaseWφvBaseW
19 18 adantrr φvBaseWTLSSumWLSpanWv=BaseWφvBaseW
20 2 adantr φvBaseWWLVec
21 9 1 7 3 lshplss φTLSubSpW
22 21 adantr φvBaseWTLSubSpW
23 10 adantr φvBaseWULSubSpW
24 simpr φvBaseWvBaseW
25 5 9 13 14 20 22 23 24 lsmcv φvBaseWTUUTLSSumWLSpanWvU=TLSSumWLSpanWv
26 19 25 syl3an1 φvBaseWTLSSumWLSpanWv=BaseWTUUTLSSumWLSpanWvU=TLSSumWLSpanWv
27 26 3expia φvBaseWTLSSumWLSpanWv=BaseWTUUTLSSumWLSpanWvU=TLSSumWLSpanWv
28 simplrr φvBaseWTLSSumWLSpanWv=BaseWTUTLSSumWLSpanWv=BaseW
29 28 sseq2d φvBaseWTLSSumWLSpanWv=BaseWTUUTLSSumWLSpanWvUBaseW
30 28 eqeq2d φvBaseWTLSSumWLSpanWv=BaseWTUU=TLSSumWLSpanWvU=BaseW
31 27 29 30 3imtr3d φvBaseWTLSSumWLSpanWv=BaseWTUUBaseWU=BaseW
32 31 exp42 φvBaseWTLSSumWLSpanWv=BaseWTUUBaseWU=BaseW
33 32 rexlimdv φvBaseWTLSSumWLSpanWv=BaseWTUUBaseWU=BaseW
34 17 33 mpd φTUUBaseWU=BaseW
35 12 34 mpid φTUU=BaseW
36 35 necon3ad φUBaseW¬TU
37 8 36 mpd φ¬TU
38 df-pss TUTUTU
39 38 simplbi2 TUTUTU
40 39 necon1bd TU¬TUT=U
41 37 40 syl5com φTUT=U
42 eqimss T=UTU
43 41 42 impbid1 φTUT=U