Description: Subgroup sum is an upper bound of its arguments. (Contributed by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmless2.v | |
|
lsmless2.s | |
||
Assertion | lsmub1x | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmless2.v | |
|
2 | lsmless2.s | |
|
3 | submrcl | |
|
4 | 3 | ad2antlr | |
5 | simpll | |
|
6 | simpr | |
|
7 | 5 6 | sseldd | |
8 | eqid | |
|
9 | eqid | |
|
10 | 1 8 9 | mndrid | |
11 | 4 7 10 | syl2anc | |
12 | 1 | submss | |
13 | 12 | ad2antlr | |
14 | 9 | subm0cl | |
15 | 14 | ad2antlr | |
16 | 1 8 2 | lsmelvalix | |
17 | 4 5 13 6 15 16 | syl32anc | |
18 | 11 17 | eqeltrrd | |
19 | 18 | ex | |
20 | 19 | ssrdv | |