Metamath Proof Explorer


Theorem lspdisjb

Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015)

Ref Expression
Hypotheses lspdisjb.v V=BaseW
lspdisjb.o 0˙=0W
lspdisjb.n N=LSpanW
lspdisjb.s S=LSubSpW
lspdisjb.w φWLVec
lspdisjb.u φUS
lspdisjb.x φXV0˙
Assertion lspdisjb φ¬XUNXU=0˙

Proof

Step Hyp Ref Expression
1 lspdisjb.v V=BaseW
2 lspdisjb.o 0˙=0W
3 lspdisjb.n N=LSpanW
4 lspdisjb.s S=LSubSpW
5 lspdisjb.w φWLVec
6 lspdisjb.u φUS
7 lspdisjb.x φXV0˙
8 5 adantr φ¬XUWLVec
9 6 adantr φ¬XUUS
10 7 eldifad φXV
11 10 adantr φ¬XUXV
12 simpr φ¬XU¬XU
13 1 2 3 4 8 9 11 12 lspdisj φ¬XUNXU=0˙
14 eldifsni XV0˙X0˙
15 7 14 syl φX0˙
16 15 adantr φNXU=0˙X0˙
17 lveclmod WLVecWLMod
18 5 17 syl φWLMod
19 1 3 lspsnid WLModXVXNX
20 18 10 19 syl2anc φXNX
21 elin XNXUXNXXU
22 eleq2 NXU=0˙XNXUX0˙
23 elsni X0˙X=0˙
24 22 23 syl6bi NXU=0˙XNXUX=0˙
25 21 24 biimtrrid NXU=0˙XNXXUX=0˙
26 25 expd NXU=0˙XNXXUX=0˙
27 20 26 mpan9 φNXU=0˙XUX=0˙
28 27 necon3ad φNXU=0˙X0˙¬XU
29 16 28 mpd φNXU=0˙¬XU
30 13 29 impbida φ¬XUNXU=0˙