Metamath Proof Explorer


Theorem lspsncmp

Description: Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015)

Ref Expression
Hypotheses lspsncmp.v V=BaseW
lspsncmp.o 0˙=0W
lspsncmp.n N=LSpanW
lspsncmp.w φWLVec
lspsncmp.x φXV0˙
lspsncmp.y φYV
Assertion lspsncmp φNXNYNX=NY

Proof

Step Hyp Ref Expression
1 lspsncmp.v V=BaseW
2 lspsncmp.o 0˙=0W
3 lspsncmp.n N=LSpanW
4 lspsncmp.w φWLVec
5 lspsncmp.x φXV0˙
6 lspsncmp.y φYV
7 4 adantr φNXNYWLVec
8 6 adantr φNXNYYV
9 eqid LSubSpW=LSubSpW
10 lveclmod WLVecWLMod
11 4 10 syl φWLMod
12 1 9 3 lspsncl WLModYVNYLSubSpW
13 11 6 12 syl2anc φNYLSubSpW
14 5 eldifad φXV
15 1 9 3 11 13 14 lspsnel5 φXNYNXNY
16 15 biimpar φNXNYXNY
17 eldifsni XV0˙X0˙
18 5 17 syl φX0˙
19 18 adantr φNXNYX0˙
20 1 2 3 7 8 16 19 lspsneleq φNXNYNX=NY
21 20 ex φNXNYNX=NY
22 eqimss NX=NYNXNY
23 21 22 impbid1 φNXNYNX=NY