Metamath Proof Explorer


Theorem lspsnsub

Description: Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015)

Ref Expression
Hypotheses lspsnsub.v V=BaseW
lspsnsub.s -˙=-W
lspsnsub.n N=LSpanW
lspsnsub.w φWLMod
lspsnsub.x φXV
lspsnsub.y φYV
Assertion lspsnsub φNX-˙Y=NY-˙X

Proof

Step Hyp Ref Expression
1 lspsnsub.v V=BaseW
2 lspsnsub.s -˙=-W
3 lspsnsub.n N=LSpanW
4 lspsnsub.w φWLMod
5 lspsnsub.x φXV
6 lspsnsub.y φYV
7 1 2 lmodvsubcl WLModXVYVX-˙YV
8 4 5 6 7 syl3anc φX-˙YV
9 eqid invgW=invgW
10 1 9 3 lspsnneg WLModX-˙YVNinvgWX-˙Y=NX-˙Y
11 4 8 10 syl2anc φNinvgWX-˙Y=NX-˙Y
12 lmodgrp WLModWGrp
13 4 12 syl φWGrp
14 1 2 9 grpinvsub WGrpXVYVinvgWX-˙Y=Y-˙X
15 13 5 6 14 syl3anc φinvgWX-˙Y=Y-˙X
16 15 sneqd φinvgWX-˙Y=Y-˙X
17 16 fveq2d φNinvgWX-˙Y=NY-˙X
18 11 17 eqtr3d φNX-˙Y=NY-˙X