Metamath Proof Explorer


Theorem lspun0

Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015)

Ref Expression
Hypotheses lspun0.v V=BaseW
lspun0.o 0˙=0W
lspun0.n N=LSpanW
lspun0.w φWLMod
lspun0.x φXV
Assertion lspun0 φNX0˙=NX

Proof

Step Hyp Ref Expression
1 lspun0.v V=BaseW
2 lspun0.o 0˙=0W
3 lspun0.n N=LSpanW
4 lspun0.w φWLMod
5 lspun0.x φXV
6 1 2 lmod0vcl WLMod0˙V
7 4 6 syl φ0˙V
8 7 snssd φ0˙V
9 1 3 lspun WLModXV0˙VNX0˙=NNXN0˙
10 4 5 8 9 syl3anc φNX0˙=NNXN0˙
11 2 3 lspsn0 WLModN0˙=0˙
12 4 11 syl φN0˙=0˙
13 12 uneq2d φNXN0˙=NX0˙
14 eqid LSubSpW=LSubSpW
15 1 14 3 lspcl WLModXVNXLSubSpW
16 4 5 15 syl2anc φNXLSubSpW
17 2 14 lss0ss WLModNXLSubSpW0˙NX
18 4 16 17 syl2anc φ0˙NX
19 ssequn2 0˙NXNX0˙=NX
20 18 19 sylib φNX0˙=NX
21 13 20 eqtrd φNXN0˙=NX
22 21 fveq2d φNNXN0˙=NNX
23 1 3 lspidm WLModXVNNX=NX
24 4 5 23 syl2anc φNNX=NX
25 22 24 eqtrd φNNXN0˙=NX
26 10 25 eqtrd φNX0˙=NX