Metamath Proof Explorer


Theorem lspval

Description: The span of a set of vectors (in a left module). ( spanval analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspval.v V = Base W
lspval.s S = LSubSp W
lspval.n N = LSpan W
Assertion lspval W LMod U V N U = t S | U t

Proof

Step Hyp Ref Expression
1 lspval.v V = Base W
2 lspval.s S = LSubSp W
3 lspval.n N = LSpan W
4 1 2 3 lspfval W LMod N = s 𝒫 V t S | s t
5 4 fveq1d W LMod N U = s 𝒫 V t S | s t U
6 5 adantr W LMod U V N U = s 𝒫 V t S | s t U
7 eqid s 𝒫 V t S | s t = s 𝒫 V t S | s t
8 sseq1 s = U s t U t
9 8 rabbidv s = U t S | s t = t S | U t
10 9 inteqd s = U t S | s t = t S | U t
11 simpr W LMod U V U V
12 1 fvexi V V
13 12 elpw2 U 𝒫 V U V
14 11 13 sylibr W LMod U V U 𝒫 V
15 1 2 lss1 W LMod V S
16 sseq2 t = V U t U V
17 16 rspcev V S U V t S U t
18 15 17 sylan W LMod U V t S U t
19 intexrab t S U t t S | U t V
20 18 19 sylib W LMod U V t S | U t V
21 7 10 14 20 fvmptd3 W LMod U V s 𝒫 V t S | s t U = t S | U t
22 6 21 eqtrd W LMod U V N U = t S | U t