Metamath Proof Explorer


Theorem lsslinds

Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses lsslindf.u U=LSubSpW
lsslindf.x X=W𝑠S
Assertion lsslinds WLModSUFSFLIndSXFLIndSW

Proof

Step Hyp Ref Expression
1 lsslindf.u U=LSubSpW
2 lsslindf.x X=W𝑠S
3 eqid BaseW=BaseW
4 3 1 lssss SUSBaseW
5 2 3 ressbas2 SBaseWS=BaseX
6 4 5 syl SUS=BaseX
7 6 3ad2ant2 WLModSUFSS=BaseX
8 7 sseq2d WLModSUFSFSFBaseX
9 4 3ad2ant2 WLModSUFSSBaseW
10 sstr2 FSSBaseWFBaseW
11 9 10 mpan9 WLModSUFSFSFBaseW
12 simpl3 WLModSUFSFBaseWFS
13 11 12 impbida WLModSUFSFSFBaseW
14 8 13 bitr3d WLModSUFSFBaseXFBaseW
15 rnresi ranIF=F
16 15 sseq1i ranIFSFS
17 1 2 lsslindf WLModSUranIFSIFLIndFXIFLIndFW
18 16 17 syl3an3br WLModSUFSIFLIndFXIFLIndFW
19 14 18 anbi12d WLModSUFSFBaseXIFLIndFXFBaseWIFLIndFW
20 2 ovexi XV
21 eqid BaseX=BaseX
22 21 islinds XVFLIndSXFBaseXIFLIndFX
23 20 22 mp1i WLModSUFSFLIndSXFBaseXIFLIndFX
24 3 islinds WLModFLIndSWFBaseWIFLIndFW
25 24 3ad2ant1 WLModSUFSFLIndSWFBaseWIFLIndFW
26 19 23 25 3bitr4d WLModSUFSFLIndSXFLIndSW