| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsslsp.x |  | 
						
							| 2 |  | lsslsp.m |  | 
						
							| 3 |  | lsslsp.n |  | 
						
							| 4 |  | lsslsp.l |  | 
						
							| 5 |  | simp1 |  | 
						
							| 6 | 1 4 | lsslmod |  | 
						
							| 7 | 6 | 3adant3 |  | 
						
							| 8 |  | simp3 |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 4 | lssss |  | 
						
							| 11 | 10 | 3ad2ant2 |  | 
						
							| 12 | 1 9 | ressbas2 |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 8 13 | sseqtrd |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 15 16 3 | lspcl |  | 
						
							| 18 | 7 14 17 | syl2anc |  | 
						
							| 19 | 1 4 16 | lsslss |  | 
						
							| 20 | 19 | 3adant3 |  | 
						
							| 21 | 18 20 | mpbid |  | 
						
							| 22 | 21 | simpld |  | 
						
							| 23 | 15 3 | lspssid |  | 
						
							| 24 | 7 14 23 | syl2anc |  | 
						
							| 25 | 4 2 | lspssp |  | 
						
							| 26 | 5 22 24 25 | syl3anc |  | 
						
							| 27 | 8 11 | sstrd |  | 
						
							| 28 | 9 4 2 | lspcl |  | 
						
							| 29 | 5 27 28 | syl2anc |  | 
						
							| 30 | 4 2 | lspssp |  | 
						
							| 31 | 1 4 16 | lsslss |  | 
						
							| 32 | 31 | 3adant3 |  | 
						
							| 33 | 29 30 32 | mpbir2and |  | 
						
							| 34 | 9 2 | lspssid |  | 
						
							| 35 | 5 27 34 | syl2anc |  | 
						
							| 36 | 16 3 | lspssp |  | 
						
							| 37 | 7 33 35 36 | syl3anc |  | 
						
							| 38 | 26 37 | eqssd |  |