Metamath Proof Explorer


Theorem lssset

Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 15-Jul-2014)

Ref Expression
Hypotheses lssset.f F = Scalar W
lssset.b B = Base F
lssset.v V = Base W
lssset.p + ˙ = + W
lssset.t · ˙ = W
lssset.s S = LSubSp W
Assertion lssset W X S = s 𝒫 V | x B a s b s x · ˙ a + ˙ b s

Proof

Step Hyp Ref Expression
1 lssset.f F = Scalar W
2 lssset.b B = Base F
3 lssset.v V = Base W
4 lssset.p + ˙ = + W
5 lssset.t · ˙ = W
6 lssset.s S = LSubSp W
7 elex W X W V
8 fveq2 w = W Base w = Base W
9 8 3 syl6eqr w = W Base w = V
10 9 pweqd w = W 𝒫 Base w = 𝒫 V
11 10 difeq1d w = W 𝒫 Base w = 𝒫 V
12 fveq2 w = W Scalar w = Scalar W
13 12 1 syl6eqr w = W Scalar w = F
14 13 fveq2d w = W Base Scalar w = Base F
15 14 2 syl6eqr w = W Base Scalar w = B
16 fveq2 w = W w = W
17 16 5 syl6eqr w = W w = · ˙
18 17 oveqd w = W x w a = x · ˙ a
19 18 oveq1d w = W x w a + w b = x · ˙ a + w b
20 fveq2 w = W + w = + W
21 20 4 syl6eqr w = W + w = + ˙
22 21 oveqd w = W x · ˙ a + w b = x · ˙ a + ˙ b
23 19 22 eqtrd w = W x w a + w b = x · ˙ a + ˙ b
24 23 eleq1d w = W x w a + w b s x · ˙ a + ˙ b s
25 24 2ralbidv w = W a s b s x w a + w b s a s b s x · ˙ a + ˙ b s
26 15 25 raleqbidv w = W x Base Scalar w a s b s x w a + w b s x B a s b s x · ˙ a + ˙ b s
27 11 26 rabeqbidv w = W s 𝒫 Base w | x Base Scalar w a s b s x w a + w b s = s 𝒫 V | x B a s b s x · ˙ a + ˙ b s
28 df-lss LSubSp = w V s 𝒫 Base w | x Base Scalar w a s b s x w a + w b s
29 3 fvexi V V
30 29 pwex 𝒫 V V
31 30 difexi 𝒫 V V
32 31 rabex s 𝒫 V | x B a s b s x · ˙ a + ˙ b s V
33 27 28 32 fvmpt W V LSubSp W = s 𝒫 V | x B a s b s x · ˙ a + ˙ b s
34 7 33 syl W X LSubSp W = s 𝒫 V | x B a s b s x · ˙ a + ˙ b s
35 6 34 syl5eq W X S = s 𝒫 V | x B a s b s x · ˙ a + ˙ b s