Metamath Proof Explorer


Theorem lssset

Description: The set of all (not necessarily closed) linear subspaces of a left module or left vector space. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 15-Jul-2014)

Ref Expression
Hypotheses lssset.f F=ScalarW
lssset.b B=BaseF
lssset.v V=BaseW
lssset.p +˙=+W
lssset.t ·˙=W
lssset.s S=LSubSpW
Assertion lssset WXS=s𝒫V|xBasbsx·˙a+˙bs

Proof

Step Hyp Ref Expression
1 lssset.f F=ScalarW
2 lssset.b B=BaseF
3 lssset.v V=BaseW
4 lssset.p +˙=+W
5 lssset.t ·˙=W
6 lssset.s S=LSubSpW
7 elex WXWV
8 fveq2 w=WBasew=BaseW
9 8 3 eqtr4di w=WBasew=V
10 9 pweqd w=W𝒫Basew=𝒫V
11 10 difeq1d w=W𝒫Basew=𝒫V
12 fveq2 w=WScalarw=ScalarW
13 12 1 eqtr4di w=WScalarw=F
14 13 fveq2d w=WBaseScalarw=BaseF
15 14 2 eqtr4di w=WBaseScalarw=B
16 fveq2 w=Ww=W
17 16 5 eqtr4di w=Ww=·˙
18 17 oveqd w=Wxwa=x·˙a
19 18 oveq1d w=Wxwa+wb=x·˙a+wb
20 fveq2 w=W+w=+W
21 20 4 eqtr4di w=W+w=+˙
22 21 oveqd w=Wx·˙a+wb=x·˙a+˙b
23 19 22 eqtrd w=Wxwa+wb=x·˙a+˙b
24 23 eleq1d w=Wxwa+wbsx·˙a+˙bs
25 24 2ralbidv w=Wasbsxwa+wbsasbsx·˙a+˙bs
26 15 25 raleqbidv w=WxBaseScalarwasbsxwa+wbsxBasbsx·˙a+˙bs
27 11 26 rabeqbidv w=Ws𝒫Basew|xBaseScalarwasbsxwa+wbs=s𝒫V|xBasbsx·˙a+˙bs
28 df-lss LSubSp=wVs𝒫Basew|xBaseScalarwasbsxwa+wbs
29 3 fvexi VV
30 29 pwex 𝒫VV
31 30 difexi 𝒫VV
32 31 rabex s𝒫V|xBasbsx·˙a+˙bsV
33 27 28 32 fvmpt WVLSubSpW=s𝒫V|xBasbsx·˙a+˙bs
34 7 33 syl WXLSubSpW=s𝒫V|xBasbsx·˙a+˙bs
35 6 34 eqtrid WXS=s𝒫V|xBasbsx·˙a+˙bs