Description: If the right-hand side of a 'less than' relationship is an addition, then we can express the left-hand side as an addition, too, where each term is respectively less than each term of the original right side. (Contributed by Thierry Arnoux, 15-Mar-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt2addrd.1 | |
|
lt2addrd.2 | |
||
lt2addrd.3 | |
||
lt2addrd.4 | |
||
Assertion | lt2addrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt2addrd.1 | |
|
2 | lt2addrd.2 | |
|
3 | lt2addrd.3 | |
|
4 | lt2addrd.4 | |
|
5 | 2 3 | readdcld | |
6 | 5 1 | resubcld | |
7 | 6 | rehalfcld | |
8 | 2 7 | resubcld | |
9 | 3 7 | resubcld | |
10 | 3 | recnd | |
11 | 2 | recnd | |
12 | 11 10 | addcld | |
13 | 1 | recnd | |
14 | 12 13 | subcld | |
15 | 14 | halfcld | |
16 | 10 15 15 | subsub4d | |
17 | 16 | oveq2d | |
18 | 10 15 | subcld | |
19 | 11 15 18 | subadd23d | |
20 | 14 | 2halvesd | |
21 | 20 14 | eqeltrd | |
22 | 11 10 21 | addsubassd | |
23 | 17 19 22 | 3eqtr4d | |
24 | 20 | oveq2d | |
25 | 12 13 | nncand | |
26 | 23 24 25 | 3eqtrrd | |
27 | difrp | |
|
28 | 1 5 27 | syl2anc | |
29 | 4 28 | mpbid | |
30 | 29 | rphalfcld | |
31 | 2 30 | ltsubrpd | |
32 | 3 30 | ltsubrpd | |
33 | oveq1 | |
|
34 | 33 | eqeq2d | |
35 | breq1 | |
|
36 | 34 35 | 3anbi12d | |
37 | oveq2 | |
|
38 | 37 | eqeq2d | |
39 | breq1 | |
|
40 | 38 39 | 3anbi13d | |
41 | 36 40 | rspc2ev | |
42 | 8 9 26 31 32 41 | syl113anc | |