Metamath Proof Explorer


Theorem ltrncnvel

Description: The converse of the lattice translation of an atom not under the fiducial co-atom. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses ltrnel.l ˙=K
ltrnel.a A=AtomsK
ltrnel.h H=LHypK
ltrnel.t T=LTrnKW
Assertion ltrncnvel KHLWHFTPA¬P˙WF-1PA¬F-1P˙W

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙=K
2 ltrnel.a A=AtomsK
3 ltrnel.h H=LHypK
4 ltrnel.t T=LTrnKW
5 1 2 3 4 ltrncnvat KHLWHFTPAF-1PA
6 5 3adant3r KHLWHFTPA¬P˙WF-1PA
7 simp3r KHLWHFTPA¬P˙W¬P˙W
8 simp1 KHLWHFTPA¬P˙WKHLWH
9 simp2 KHLWHFTPA¬P˙WFT
10 eqid BaseK=BaseK
11 10 2 atbase F-1PAF-1PBaseK
12 6 11 syl KHLWHFTPA¬P˙WF-1PBaseK
13 simp1r KHLWHFTPA¬P˙WWH
14 10 3 lhpbase WHWBaseK
15 13 14 syl KHLWHFTPA¬P˙WWBaseK
16 10 1 3 4 ltrnle KHLWHFTF-1PBaseKWBaseKF-1P˙WFF-1P˙FW
17 8 9 12 15 16 syl112anc KHLWHFTPA¬P˙WF-1P˙WFF-1P˙FW
18 10 3 4 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
19 18 3adant3 KHLWHFTPA¬P˙WF:BaseK1-1 ontoBaseK
20 simp3l KHLWHFTPA¬P˙WPA
21 10 2 atbase PAPBaseK
22 20 21 syl KHLWHFTPA¬P˙WPBaseK
23 f1ocnvfv2 F:BaseK1-1 ontoBaseKPBaseKFF-1P=P
24 19 22 23 syl2anc KHLWHFTPA¬P˙WFF-1P=P
25 simp1l KHLWHFTPA¬P˙WKHL
26 25 hllatd KHLWHFTPA¬P˙WKLat
27 10 1 latref KLatWBaseKW˙W
28 26 15 27 syl2anc KHLWHFTPA¬P˙WW˙W
29 10 1 3 4 ltrnval1 KHLWHFTWBaseKW˙WFW=W
30 8 9 15 28 29 syl112anc KHLWHFTPA¬P˙WFW=W
31 24 30 breq12d KHLWHFTPA¬P˙WFF-1P˙FWP˙W
32 17 31 bitrd KHLWHFTPA¬P˙WF-1P˙WP˙W
33 7 32 mtbird KHLWHFTPA¬P˙W¬F-1P˙W
34 6 33 jca KHLWHFTPA¬P˙WF-1PA¬F-1P˙W