Metamath Proof Explorer


Theorem ltrnco

Description: The composition of two translations is a translation. Part of proof of Lemma G of Crawley p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses ltrnco.h H=LHypK
ltrnco.t T=LTrnKW
Assertion ltrnco KHLWHFTGTFGT

Proof

Step Hyp Ref Expression
1 ltrnco.h H=LHypK
2 ltrnco.t T=LTrnKW
3 simp1 KHLWHFTGTKHLWH
4 eqid LDilKW=LDilKW
5 1 4 2 ltrnldil KHLWHFTFLDilKW
6 5 3adant3 KHLWHFTGTFLDilKW
7 1 4 2 ltrnldil KHLWHGTGLDilKW
8 7 3adant2 KHLWHFTGTGLDilKW
9 1 4 ldilco KHLWHFLDilKWGLDilKWFGLDilKW
10 3 6 8 9 syl3anc KHLWHFTGTFGLDilKW
11 simp11 KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWKHLWH
12 simp2l KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWpAtomsK
13 simp3l KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKW¬pKW
14 12 13 jca KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWpAtomsK¬pKW
15 simp2r KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWqAtomsK
16 simp3r KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKW¬qKW
17 15 16 jca KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWqAtomsK¬qKW
18 simp12 KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWFT
19 simp13 KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWGT
20 eqid K=K
21 eqid joinK=joinK
22 eqid meetK=meetK
23 eqid AtomsK=AtomsK
24 20 21 22 23 1 2 cdlemg41 KHLWHpAtomsK¬pKWqAtomsK¬qKWFTGTpjoinKFGpmeetKW=qjoinKFGqmeetKW
25 11 14 17 18 19 24 syl122anc KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWpjoinKFGpmeetKW=qjoinKFGqmeetKW
26 25 3exp KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWpjoinKFGpmeetKW=qjoinKFGqmeetKW
27 26 ralrimivv KHLWHFTGTpAtomsKqAtomsK¬pKW¬qKWpjoinKFGpmeetKW=qjoinKFGqmeetKW
28 20 21 22 23 1 4 2 isltrn KHLWHFGTFGLDilKWpAtomsKqAtomsK¬pKW¬qKWpjoinKFGpmeetKW=qjoinKFGqmeetKW
29 28 3ad2ant1 KHLWHFTGTFGTFGLDilKWpAtomsKqAtomsK¬pKW¬qKWpjoinKFGpmeetKW=qjoinKFGqmeetKW
30 10 27 29 mpbir2and KHLWHFTGTFGT