Metamath Proof Explorer


Theorem ltrnco4

Description: Rearrange a composition of 4 translations, analogous to an4 . (Contributed by NM, 10-Jun-2013)

Ref Expression
Hypotheses ltrncom.h H=LHypK
ltrncom.t T=LTrnKW
Assertion ltrnco4 KHLWHETFTDEFG=DFEG

Proof

Step Hyp Ref Expression
1 ltrncom.h H=LHypK
2 ltrncom.t T=LTrnKW
3 1 2 ltrncom KHLWHETFTEF=FE
4 3 coeq1d KHLWHETFTEFG=FEG
5 coass EFG=EFG
6 coass FEG=FEG
7 4 5 6 3eqtr3g KHLWHETFTEFG=FEG
8 7 coeq2d KHLWHETFTDEFG=DFEG
9 coass DEFG=DEFG
10 coass DFEG=DFEG
11 8 9 10 3eqtr4g KHLWHETFTDEFG=DFEG